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Germany
oS0 € = $3.3b

Denmark

European Quantum Flagship

DKK2.7b = $404m b€ = $L1b

Netherlands

United Kingdom
o 23:0b = $4.3b

Canada
.CA$2.7b = $1.9b

Global
effort 2025

$44.5b
(estimate)

US National Quantum
olnitiative $7.70

@QURECA Ltd. 2025, all rights reserved

C Spain
J0m € = $67m

France
i 1.8b € = $2.2b

Switzerland
by CHF10m = $1Tm

_,ltély
22.7.4m € = $239m

Austria

Finland

107m € = $127m
®

Hungary

HUF3.5b = $1Im
®

South Africa
oB24m =33m

Qatar

$10m
-~ o

Israel
m 1.2b = $390m

China
$15b

Russia
£100b = $1.1Q

Japan
¥80b = $700m &

Taiwan
NT$8b = $282m4

¢ Philippines
P8S0Om = $15.3m4

Singapore
S$185m = $138m'

Australia
AU$953m = $663m’

\
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“5 igﬁ: :;a?rt-;$:i2iuantum Network ( PSU, Quantum Ground-based
yosh Quantum Network

2 2
| N\ l. \ 2571 : Metropolitan Quantum Network (Municipality, [SEaSSSuUMELEIgel s
| \\ | \\ Provincial Administrative Bodies, NT, NBTC)
I K I 5
| \ | Vi
X &g | N -
O . A i ~
s ‘\a a 2567 : Join Global Standardization Body (NT, NBTC,
W W ITU-T, ETSI, ISO)
. \ J

2567-2569 : Cooperate with Quantum Satellites (Thai
Gov., Canadian Gov., Chinese Gov., Singporean Gov.)

[ 2568 - 2570 : Build the Ground Station for Quantum Quantum Satellite

Satellites (QTRic, NARIT, GISTDA) (< geosynchronous
orbit, free space )

2572 : Connect Satellite-based Network with Ground-

based Network

PSU = Prince of Songkla University, SUT = Suranaree University of Technology, NT - National Telecom Public Company Limited (NT), NBTC - National Broadcasting and
Telecommunications Commission, MHESI - Ministry of Higher Education, Science, Research and Innovation, DE - Ministry of Digital Economy and Society, MOT -
Ministry of Transport, MOI - Ministry of Interior of the Kingdom of Thailand, MOD - Ministry of Defence, ITU-T - Telecommunication Standardization Sector, The
International Telecommunication Union (ITU), United Nation, ETSI - European Telecommunications Standards Institute, 150 - International Organization for
Standardization, NARIT - National Astronomical Research Institute of Thailand, GISTDA - Geo-Informatics and Space Technology Development Agency,

QTRic = Quantum Technology Research Initiative Consortium (Thailand)



Components

Sender

- Single photon source
(SPS)

- Entanglement source

- Quantum Random
Number Generator (QRNG)

Global Challenge

- Efficient Photon Emitters
(EPE) at the chip level and
room temperature

- High key-rate QRNG

- QRNG chips

- Chip scale photonic
quantum information
processing

Progress 2568

- Quantum Emitter

- QRNG chips

- Bulk optic Entangled SPS

- Single photon device
certification

Receiver
- Single photon detector

-High-speed and Eficient
Single photon

-Chip scale photonic quantum
information processing

- Hybrid-perovskite
photon detector

nication

Repeater node
- Enabled Quantum Repeat

- High fidelity and long life-
time quantum memory

- Enabled Quantum Repeat
- High fidelity and long life-
time quantum memory

- Quantum Memory

Quantum Communication
Channel

- QKD

- Network design &
optimization

- Satellite technology

- Reliable Quantum network
- Satellite-based quantum
communication

- QKD at short distance (<
100m)

- Quantum Network
Simulation

Post-Quantum Cryptography Readiness

Sender Re

Quantum Communication
Between two parties
(2564 -2570)

iver

Pruet Kalasuwan, Sujin Suwanna, Poomphong Chaiwongkhot

The Quantum

Network

(2571-2574)



Entanglement test : reproduce the Nobel 2022 work
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C(a,b) = Correlation function wihin “a,b” basis
_ N(a,b) — N(a,bl) - N(al,b) + N(a_L,bJ_)

B N(a,b) + N(a,bl) + N(al,b) + N(a_L,bJ_)
N(a,b) = (1,1, ) giving outcome a,b

S = Bell parameter
=C(Q,9)+C(R,S)—-CWQT)+CR,T)

C:S5<2Q:S>2(maxat 2v2).



Photons image for (future) quantum sensing

SPDC ring image on linear scale (cut the bright pixel off)
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Free-space BB84 demonstration
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QRNG on chip
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Frequency of 4-bit Blocks

Frequency of 8-bit Blocks
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Emission Wavelengths and Photophysical Properties of hBN Defects

Wavelength for Other systems in . Defect transition energy (eV)/
Quantum Technology (nm) quantum technology Compatible hBN defects wavelength (nm)
SpVs 2.252/550.7
552 PbV~ (diamond) IngVn 2.237/554.4
InNVp 2236/ 554.5
589 Na-D2 OpVp 2.110/587.6
Tiy Ve 2.100/590.5
390 Na-Di VaVTi 2.097/591.3
602 GeV™ (diamond) ErgNgVy 2.063/601.1
606 Pr’*:Y,SiOs * SngVp 2.037/608.8
620 SnV~ (diamond) VnVs 2.024/612.7
637 NV~ (diamond) ** Aln 1.918 / 646.6
656 Fraunhofer line PNV 1.810/673.4
738 SiV~ (diamond) VeVs 1.678 / 738.8
ErgVg 1.592/778.7
780 Rb-D2 ErnVp 1.590/779.6
T Y5510 EneY 1537/ 806
795 Rb-D1 NUBUN ' '
AlgVg 1.535/807.9
850 Telecom-1
852 Cs.D2 ErnVn 1.473/842.0
862 V.. (silicon carbide) ErgVy 1.427/ 869.0
894 Cs-D1 *ErgVg 1.398 / 886.9
1330 Telecom O-band OnSn 0.946/1310.2
1550 Telecom C-band * Erg 0.789/1572.3

* Transition between VB or degenerate (ground) state and an unoccupied non-degenerate (excited) state.

** Transition between double-occupied (degenerate) ground and unoccupied degenerate excited state.

J. Phys. Chem. Lett. (2023), 14, 6564-6571, Nanomaterials (2022), 12, 2427.

Photophysical Defects
Properties Aly PxVg
Transition order Ist 1st
Most stable configuration Singlet Doublet
Spin transition 1-1 -1
ZPL (nm) 682 673
AQ (amu'/2A) 0.83 0.70
HR 2.86 1.87
DW 0.06 0.15
Excitation polarization (°) 5.38 5.02
Excitation In-plane ratio 0.61 1.00
Emission polarization (°) 54.62 16.85
Emission In-plane ratio 0.99 1.00
Eo (eV) 1.82 1.81
p2_, (Debye?) 2.59 x 10* 9.46 x 10*
TCr (1/s) 4.74 x 102 1.70 x 10°
Tr (ns) 2.11 x 105 5.89 x 10°
ODMR unlikely unlikely
(c)YbTéYOYO 4.01() \
O O O 331
v v 3,0 { Excited state
2 2
2.5 L
,oY Y'O\Yf v S0 TR

Absorption

ZPL

Ground state

—0.5

0.0 0.5
Q [amu'? A)

1.0




Single Atom Solid State Quantum Memory

,Writing efficiency in the absence of decay
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Summary: Quantum Emitters and Quantum Memory 2

o . maintained by
}‘_‘j“" );_‘f“' ( www.h-bn.info

a ] 1) [

Fermi energy (eV) Configuration coordinate Wa'-tlﬂngﬂ:l J 14 ﬁ

Triplet Singlet

Electronic struciures Defect formation energy*  Excitation polarization \Transitiun rate and lifetime Photoluminescence® Emission polarization .
. J /e

e 257 electronic transitions are found to feature ISC based on DFT.

* Most defects require quality factor of 10° for 95% efficiency with bandwidth of 102 GHz

e (Quality factor and bandwidth depend on radiative transition rate.

e Optimizing a defect yields higher improvement than fine-tuning, i.e., via strain.

Made-3: IPR~34



Quantum Network Simulation 5

Credit: Poramet Pathumsoot
a

) = alo) + o) = [}

Even more general representation
of quantum state, density matrix

Pauli noise B N
9 9 p=>_ pyli)(jl = 1}
Q Gate error
Bit flip : with probability p_gate apply Pauli error Memory error
instead of gate with probability

depend on time

Pauli noise has a probability of propagating through
P ¥ ©1 brobag 9 d of measurement

uantum gate operation via a transformation. Depolarizing error : :
) ’ " error after c?eate Noise model in
Bell pair qwanta
Fidelity F is a measure of how close two quantum states Photon loss
which indicates the quality of a qubit directly related
Measurement error to this error
actual state

completely wrong with probability p_meaErr to apply Pauli
|

i noise on measurement result
Fp,0) = (try[yBoyp)? | 0< F(p,0) <1

\— desired state

actual is the
same as desired

gwanta Will calculate fidelity after applying all of noise models in
qubit by using a technique called “direct fidelity estimation”



Quantum Communication Strategy Analysis

Bell pair as a connection

Entanglement swapping

%) = L(100) + 1))

With technological advancement,
=% = repeater could forward qubit directly.

Entanglement purification/distillation

Sacrifice
something to get . . % .
something better

= =

@80 0G physical Bell pair

Quantum Error Correction

Encode 1 qubit .
using many _— Logical qubit
many qubits

B2E-1G Pt HG-FE

@9 1G physical Bell pair ) NCX logical Bell pair

One-way communication

BR2ZE-HG-PE

PE logical Bell pair

left[0]
centex[@]
center[1]
right[8]
Z1

X1

°
°

Bell measurement

ue

N

I

Entanglement swapping

Correction
operators

o Simulate and compare various scenarios
of guantum communication strategies.

o Optimize fidelity and throughput.

Credit: Poramet Pathumsoot



Quantum Communication Strategy Analysis

10 0G 1G E2E-1G 26 HG-PE E2E-HG-PE
measurement error 0.0 — 0.0025 — 0.005 — 0.0075 — 0.0 number of hops —a— 7 —-- 4 —=— §
0.9
0.84

o/
v
Vi

2 "ﬂ-\‘-‘ % :__=_‘—='-h ..... ._“--
= Wl e [ IECETrr— u i, - [ ] - = —_le o
ﬁiﬁaﬁsﬁa i E E E = .\.\\.. lﬁ:::.::i..:ﬁ‘“ %E = =-__= ..“.:::::::E
] B []
0.4 \:*x\:ﬁf’*-«ﬁ i
[P
03 i-g_i_ﬁﬂﬂ
5
Eé 10
ﬁ m m m n ]
(=8
—_— N r———
= 'HJ‘ u L L L u ] u u u ]
‘E- “"_—'H'-'H'-'H'-'“ n n u u u Hn--“n—-—-“r—-“r—-“
[=)]
S, S —e—e—e e e e R s e e e ]
£=
| [ ] [ ] [ ] [ ] [ ] L] L | L ] L ] [ ]
S L L] o ] L] o o o o o a2 & & o o
2

10

E 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002

Gate error parameter



Toy Model: Three-Nodes Quantum Network with Ground Stations

Research model

ISS station
(dynamic node)

«——

1SS orbit

T~

Ground station
(static node)

155 ra<u5 Earth radius

/

earth surface

End nodes Middle node
. Bangkok e International
Space Station (ISS)
e Songkhla
e Chiang Mai

Credit: Poramat Chianvichai

EPPS Protocol

End node

Send entangled photon pairs to each end node

<=

Entanglement Swapping

_____

ISS node

—

End node

Entanglement Swapping

matter Qubit

photonic Qubit

Long line Bell pair between two end node

)

ISS node is dynamic node

Bell pair



Single-Photon Device Certification Facility

Variable Filter
Lens

100 pw) IESUEELE t t
detector ! ! (10 uW)
I Beam splitte

Filter 3 Filter 2 Monitor detector

Si-SPAD (10 uW-100 pW)

(1 fW-100 pW)

Dr. Kanokwan, NIMT



Attack on QKD system

808 CW laser Infrared filter
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International Actions

@ I‘JAS ”‘:‘:::b;,‘alw\il‘lm”‘ Regulation  Development Monetary Policy Bonds&Bills  Currency  Publications  Statistics News  Careers n
CILe;klfor . . .
updates
Home / MNews / MediaReleases / 2024 / MAS Collaborates with Banks and Technology Partners on Quantum... o o
NIST Internal Report
NlST lR 8547 ipd | Published Date: 14 August 2024
. MAS Collaborates with Banks and Technology Partners on
Transition to Post-Quantum Quantum Security
Cryptography Standards
s.” MAS &
Initial Public Draft HH' uoB m HSBC . , ﬂDBS QOCBC SPEQTRQL
e neapory
Dustin Moody
; Ray Perlner si 14 August 2024... The Monetary A
* B__und_esamt' ) DeUtSChland ; ingapore, ugus ... The Monetary
Lo fiir Slcher_hmt in de_r .. . Andrew Regel‘lSChEId Memorandum of Understanding (MoU) to em . . . N
Informationstechnik Digital+Sicher+BSI Angela Robinson (QKD) ™ in financial services, QKD can help f fnternationsl Telecommuniestion Unien
David Cooper threats posed by quantum computing.
o | ITU-T  Technical Report
ion is available free of charge from:
doi. 10.6028/NIST.IR.8547.ipd TELECOMMUNICATION
e / P STANDARDIZATION SECTOR (24 November 2021)
OF ITU

Implementation Attacks
against QKD Systems

ITU-T Focus Group on Quantum Information
Technology for Networks (FG QIT4N)

FG QIT4N D2.3-part 1

Quantum key distribution network protocols:
Quantum layer

AR~




Thai NCSA’s Quantum Readiness Guideline

IE—
NCSA

a ﬂ UZj Compliance checklist and QKD
A1HNINUAMTNITNNITNITINE . . .
anniuavlaandelmuaiuiend adoptlon gU|dellne are under

consideration

AUZUITRILUIMINITURUA
NTATENANUNTONEMTUYAAIDUAN

Guidelines for Post-Quantum Readiness

AudiduanuiunsUaendeleiues

https://drive.ncsa.or.th/s/52GYxAqMfDNZ{EZ



https://drive.ncsa.or.th/s/52GYxAqMfDNZjEZ

Conclusion

Components

Sender

- Single photon source
(SPS)

- Entanglement source

- Quantum Random
Number Generator (QRNG)

Global Challenge

- Efficient Photon Emitters
(EPE) at the chip level and
room temperature

- High key-rate QRNG

- QRNG chips

- Chip scale photonic
quantum information
processing

Progress 2568

- Quantum Emitter

- QRNG chips

- Bulk optic Entangled SPS

- Single photon device
certification

Receiver
- Single photon detector

-High-speed and Eficient
Single photon

-Chip scale photonic quantum
information processing

- Hybrid-perovskite
photon detector

Repeater node
- Enabled Quantum Repeat

- High fidelity and long life-
time quantum memory

- Enabled Quantum Repeat
- High fidelity and long life-
time quantum memory

- Quantum Memory

Quantum Communication
Channel

- QKD

- Network design &
optimization

- Satellite technology

- Reliable Quantum network
- Satellite-based quantum
communication

- QKD at short distance (<
100m)

- Quantum Network
Simulation

Post-Quantum Cryptography Readiness




1820 ceto® ESTABLISHMENT OF INTEGRATED
B - lg ECOSYSTEM FOR QUANTUM TECHNOLOGY
o) RESEARCH IN THAILAND

‘[ﬂ‘i\‘i ANSANTAT NUALLAINLASITEUUINA LUUUIEUIANTS
"h‘ﬁ‘i‘U ANFIADNN L‘I/IﬂT‘LLTﬂEJﬂ'J DUBSIN TR UUFEINA

Vauwsuiau

EEEEEEEE



Mahidol University

Topics of Interests
e quantum network
e quantum random number generator
single photon generation OUR COLLABORATION
quantum memory l‘
distributed quantum computing

* quantum optical metrology Keio University AIST

* dynamics of open quantum systems S
y P G y Prof. Dr. R. Van Meter, ?AALfQI;INCED INSTITUTE OF

quantum decoherence P, Pathumsoot, M. Hadijek, .. @) SCIENCE AND TECHNOLOGY
foundation of quantum theory

Quantum Communication Prof. Dr. Ryo Maezono
Theory/Simulation/Experiment System Engineering ' R
. Vs i SPINTRONICS
Hode 1 Mode 3 Prof. Dr. Tobias. Vogl, ' /ﬁ"’ e 4
C. Cholsuk, A. Kumar, ... - S o
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- M7 ;g - ans[t':!:dtep?lf oo S M COLLEGE #= —=9)
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Prof. Dr. Stefano Sanvito,
. ./ APL Quantum 1, 026107 (2024) R. Hunkao




Quantum Networks

Ground-to-ground § Intermgdiate
station

Gonzalez-Raya et al. Comm. Physics. 7:126, 2024
Guccione et al. Sci. Adv. 6, 2020

Pain points: quantity and quality of qubits.

Quantum network for

- distributed quantum computing

. quantum communication/key distribution
- GNSS synchronization and navigation

- network of quantum sensors

www.gnulabs.com/quantum-communication-satellite-series/



Single Photon Source/Quantum Memory

_______‘_.____..._-—E—,-“Os E—— Quantum network
o e
G b, ~| Quantum repeater
—e 9=
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oy L e ] o i Quantum Communication
< Dt - by — i R —
N \ = = Bl 2 A =S
Rr il I yk=
\ S i
' \
\ v
\ :
Quantum memory F'=1 R
Control e R
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L. Schweickert et al. (2018), arXiv:1808.05921

A. RP. Montblanch, Nat. Nanotechnol. 18, 555-571 (2023).




Computational Quantum Materials to Identify SPS/QM

* gquantum single photon sources/emitters (SPE/QE)

e quantum memory (QM)

* strain engineering to fine-tune emission wavelength

* light-matter interaction: channeling phonon interaction
for ZPL.

S-band
E-band
O-band

Visible

NIR-Y
' ‘V NiN, O Si"oc"—|
X

! Diamond
SiV_ | IﬁVSiVCO O VsNe

Ultraviolet

NIR-1IT

V(V) Oy !
V4220 vwoFg | O
VsiV3) molybdenum 3 o
Vs"%«l) :'Ljﬂ VsiVe VsiNe 6’ | d
Vsi(V2) Grit vanadium
molybdenum Els+0
C-center
o
ﬂWO:Yb YSO:Er
200 400 600 800 1000 1200 1400 1600

Zero phonon line (nm)

Zhang, G., et al. (2020). Applied Physics Reviews, 7, 3.

* photo-physical properties, including phonon effects
* engineering parameters/tuning (e.g. using strain, ...)
e environmental effects (thermal effect, decoherence,...)

1 : b © Nitrogen
' ,, : O Boron
@

o Phosphorus

;lﬁé‘ >

&

\\‘
/Q” ' ----- Crystal Axis c
Y “ ~_ 11 ——P Excitation
,.,-0; ”‘ ‘5 Emission

Ywvv : *’

570 665 |
| 660
| 655

650 |
| 645 +
640 |

635

630
-0.5

0.5 1

-1 -0.5 0
Strain s (%)

-0.25 0
Strain s (%)

0.25 0.5



Experiment: Polarization Dynamics

* Experiment done at IQS,
FSU-Jena, Germany

Polarization Measurements

EHG Measurement
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Quantum Network Enginee
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Credit: Deutsches Zentrum fur Luft-und Raumfahrt (DLR), Oberpfaffenhofen




Direct Fidelity Estimate

Node measurement error & qubit memory time

0.88 |
0.86 -
0.84 = — —_———
, om Results are presented according to
£ 080 - the experiments to measure the
ore, — SV MM fidelity sensitivity based on input
— loss=0.001 ]
07 |— paeco , arameter
| meoos ————  Photon loss comparison P
0T — |o3s=0.009 l
0 — 2000 4000 6000 8000
Direct fidelity estimation (Shot)
SK_CM meaErr=0.03 tau=1 Each plot show the average form
050 five iterations and 9,000 shots
direct fidelity estimation
0.85
g-usn
Cone s Simulate five times in each case.
IR e T —
—— 13570.003 symmr e S e —— — e e —_—
loss=0.006
085 loss=0.009
0 2000 4000 BO00 BO00

Direct fidelity estimation (Shot)



Toy Model: Three-Nodes Quantum Network

Equally distanced nodes on a line Real locations of three nodes in Thailand

End node #1
e
Equally
distanced
i Repeater

End node #2 @

Credit: Poramat Chianvichai




Toy Model: Three-Nodes Quantum Network with Ground Stations

Resea rCh mOdel. EPPS Protocol Send entangled photon pairs to each end node
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Credit: Poramat Chianvichai



Simulation of Three-Node Network of Thailand 15

ISS station EPPS model
(dynamic node) Noise that affect quantum network
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e Measurement error
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\ / e ISS trajectory

With gqwanta, we performed direct fidelity estimation of 9,000 shots to find converged value

of the fidelity. However, after 2000 shots, most simulation cases converge to a definite value Yielding a minimum threshold of F - 0.71
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Nature isn't classical, dammit, and if you want to make a simulation
of nature, you'd better make it quantum mechanical, and by golly
it's a wonderful problem, because it doesn't look so easy.




CsFAMA-based Photodetectors
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Development Roadmap

Data
scientists

Researchers

Quantum
physicists

@ Executed by IBM
W On target

2016-2019 @

Ran quantum circuits on
the IBM Quantum Platform

IBM Quantum Experience

Early

Canary
5 qubits

Albatross
16 qubits

Penguin
20 qubits

Prototype
53 qubits

2020 @

Released
multi-dimensional
roadmap publicly
with initial aim
focused on scaling

Falcon

Benchmarking

27 qubits

2021 @

Enhanced quantum
execution speed

by 100x with

Qiskit Runtime

Qiskit Runtime

QASM 3

2022 ©

Brought dynamic
circuits to unlock
more computations

Dynamic
circuits

Eagle

Benchmarking

127 qubits

2023 @

Enhanced quantum
execution speed by
5x with Quantum
Serverless and
execution modes

Middleware

Quantum
Serverless

Execution
modes

2024

Improve quantum
circuit quality

and speed to allow
5K gates with
parametric circuits

Platform

Code »
assistant

Transpiler @
service

Heron ®
(5K)

Error mitigation

5k gates
133 qubits

Classical modular

Up to 133x3 =
399 qubits

2025

Enhance quantum
execution speed
and parallelization
with partitioning
and quantum
modularity

Functions

Resource
management

Flamingo
(5K)
Error mitigation

5k gates
156 qubits

Quantum modular

Up to 156x7 =
1092 qubits

2026

Improve quantum
circuit quality to
allow 7.5K gates

Mapping
collections

Circuit
knitting x p

Flamingo
(7.5K)

Error mitigation

7.5k gates
156 qubits

Quantum modular

Up to 156x7 =
1092 qubits

2027

Improve quantum
circuit quality to
allow 10K gates

Specific libraries

Intelligent
orchestration

Flamingo
(10K)

Error mitigation

10k gates
156 qubits

Quantum modular

Up to 156x7 =
1092 qubits

2028

Improve quantum
circuit quality to
allow 15K gates

Flamingo
(15K)
Error mitigation

15k gates
156 qubits

Quantum modular

Up to 156x7 =
1092 qubits

2029

Improve quantum
circuit quality to
allow 100M gates

Starling
(100M)

Error correction

100M gates
200 qubits

Error corrected
modularity

IBM Quantum

2033+

Beyond 2033,
quantum-centric
supercomputers
will include 1000's
of logical qubits
unlocking the full
power of quantum
computing

General purpose
QC libraries

Circuit
libraries

Blue Jay
(1B)

Error correction

1B gates
2000 qubits

Error corrected
modularity




Optical Devices on
chips

* Quantum gates inside a
single chip




Waveguide CNOT gates
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Photonic chip design
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