
draft-rosomakho-masque-connect-ip-optimizations-00

Yaroslav Rosomakho

Reusable templates and
checksum offload
for CONNECT-IP

MASQUE
IETF124, November 2025, Montreal

CONNECT-IP optimizations – MASQUE – IETF124 2

Challenges with CONNECT-IP
implementation

• MTU pressures when using QUIC datagrams
• CPU time lost for computing TCP/UDP checksums

To a certain extent these challenges apply to other IP-in-X
encapsulations, but we have a chance to ease them in
CONNECT-IP

CONNECT-IP optimizations – MASQUE – IETF124 3

Reusable templates
Many sections of packets of the same flow are identical
• IP version
• IPv4 header length
• Traffic Class
• IPv4 id / IPv6 flow label
• IPv4 fragmentation flags / fragment offset
• IPv4 TTL / IPv6 Hop Limit
• IP addresses
• Protocol / Next Header
• Source Port / Destination Port
• TCP header length
• Urgent pointer, some TCP options
• Potentially some headers on application layer

CONNECT-IP optimizations – MASQUE – IETF124 4

Splitting packet into segments
Original Packet

Static
segment

Static
segment

Static
segment

Dynamic
segment

Dynamic
segment Dynamic segment

Assembled into a context ID specific template
Each segment is prefixed with offset and length
Segments must not overlap

Deflated Packet

Dynamic
segment

Dynamic
segment Dynamic segment

CONNECT-IP optimizations – MASQUE – IETF124 5

Notes about templating

• It’s up to sender to decide how to split the packet. Receiver simply
re-assembles the packet. It does not need to be aware of internal
packet structure

• Support of templates is announced by each party as well as limit
of concurrent templates

• Packets can always be sent with context id 0 (without
optimizations)

• Multiple templates can be defined for a single packet flow

CONNECT-IP optimizations – MASQUE – IETF124 6

TCP/UDP Checksum offloading

• TCP and (most) UDP packets carry internet checksum
• Checksum calculation can be computationally intensive

• ~5% on x64 and arm64 CPUs on a fully loaded CONNECT-IP tunnel
• Much more punishing on RISC-V architecture since it does not have add-

with-carry instruction

• Wait… isn’t checksum always set by sender? And don’t we need to
produce valid checksum to the receiver?

CONNECT-IP optimizations – MASQUE – IETF124 7

Checksum must be computed by somebody
• Normally checksum is computed by NIC when packet is sent out
• But:

Host
Process

originating flow

NIC

C
O

N
N

EC
T-IP

There is no NIC to offload L4 checksum of original packet
It is computed on CPU by kernel or CONNECT-IP process

Host

Userland
process

C
O

N
N

EC
T-IP

Tun/tap interface with GSO does not provide checksums
Without GSO tunnel interface is limited by ~500kpps

Tun/tap

CONNECT-IP optimizations – MASQUE – IETF124 8

Checksum may not be required on the
receiver side

Host
Process

terminating flow

C
O

N
N

EC
T-

IP

Host

Userland
process

C
O

N
N

EC
T-

IP

Tun/Tap
Host

Userland
process

C
O

N
N

EC
T-

IP

NIC with
checksum offload

CONNECT-IP optimizations – MASQUE – IETF124 9

Common way to signal checksum offloading

• Process (or driver) and NIC agree on the capability
• TCP and UDP packets do include checksum of the pseudo-header
• Metadata structure associated with each packet includes

• Offset to the checksum
• Offset to the beginning of TCP/UDP header

• NIC calculates 1-complement and places the reconstructed
checksum into packet

• Relevant APIs are available in XDP, Tun/Tap and other interfaces
• https://www.kernel.org/doc/html/v6.17/networking/checksum-

offloads.html

https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html

CONNECT-IP optimizations – MASQUE – IETF124 10

Checksum offloading in CONNECT-IP

• Each party signals if it supports incoming packets with TCP/UDP
checksum offload

• Sender indicates offloaded checksum when defining context id
• Checksum offset
• Start of checksummed data

• Packets still include checksum of the pseudo-header

CONNECT-IP optimizations – MASQUE – IETF124 11

Proposed Capsules
CONNECT_IP_OPTIMIZATION_CREATE Capsule {

 Type (i) = CONNECT_IP_OPTIMIZATION_CREATE,

 Length (i),

 Context ID (i),

 Static Segments Length (i)

 Static Segments (..) ...,

 Checksum Field Offset (i)?,

 Checksum Start Offset (i)?,

}

Static Segment {

 Segment Offset (i),

 Segment Length (i),

 Segment Payload,

}

CONNECT_IP_OPTIMIZATION_DELETE Capsule {

 Type (i) = CONNECT_IP_OPTIMIZATION_DELETE,

 Length (i),

 Context ID (i),

}

CONNECT-IP optimizations – MASQUE – IETF124 12

Future development based on initial feedback

• Extend scope to all Datagrams (Connect-UDP and Datagram
Capsules)
• How to combine this with ECN/DSCP Context id?

• Generalize optimizations to TLVs with IANA registry
• Sometimes it is beneficial to omit L4 checksums completely
• IPv4 header checksum may be omitted
• Other optimizations could be added in the future

CONNECT-IP optimizations – MASQUE – IETF124 13

Next steps

• Thoughts?
• Suggestions?
• Comments?

	Slide 1: draft-rosomakho-masque-connect-ip-optimizations-00
	Slide 2: Challenges with CONNECT-IP implementation
	Slide 3: Reusable templates
	Slide 4: Splitting packet into segments
	Slide 5: Notes about templating
	Slide 6: TCP/UDP Checksum offloading
	Slide 7: Checksum must be computed by somebody
	Slide 8: Checksum may not be required on the receiver side
	Slide 9: Common way to signal checksum offloading
	Slide 10: Checksum offloading in CONNECT-IP
	Slide 11: Proposed Capsules
	Slide 12: Future development based on initial feedback
	Slide 13: Next steps

