Reusable templates and
checksum offload

for CONNECT-IP

draft-rosomakho-masque-connect-ip-optimizations-00

Yaroslav Rosomakho

MASQUE
IETF124, November 2025, Montreal



Challenges with CONNECT-IP
Implementation

* MTU pressures when using QUIC datagrams
* CPU time lost for computing TCP/UDP checksums

To a certain extent these challenges apply to other IP-in-X

encapsulations, but we have a chance to ease them in
CONNECT-IP

CONNECT-IP optimizations - MASQUE - IETF124



Reusable templates

Many sections of packets of the same flow are identical
* |P version

* |Pv4 header length

* Traffic Class

* |Pv4id/ IPv6 flow label

* |Pv4 fragmentation flags / fragment offset
 IPv4TTL/ IPv6 Hop Limit

* |P addresses

* Protocol/ Next Header

* Source Port / Destination Port

* TCP header length

* Urgent pointer, some TCP options

* Potentially some headers on application layer

CONNECT-IP optimizations - MASQUE - IETF124



Splitting packet into segments

Original Packet

Static Dynamic Static Dynamic Static

Dynamic segment
segment segment segment segment segment

Assembled into a context ID specific template
Each segment is prefixed with offset and length
Segments must not overlap

Deflated Packet

Dynamic Dynamic
segment segment

Dynamic segment

CONNECT-IP optimizations - MASQUE - IETF124



Notes about templating

* |t’s up to sender to decide how to split the packet. Receiver simply
re-assembles the packet. It does not need to be aware of internal

packet structure

* Support of templates is announced by each party as well as limit
of concurrent templates

* Packets can always be sent with contextid O (without
optimizations)

* Multiple templates can be defined for a single packet flow

CONNECT-IP optimizations - MASQUE - IETF124 )



TCP/UDP Checksum offloading

* TCP and (most) UDP packets carry internet checksum

* Checksum calculation can be computationally intensive

* ~5% on x64 and arm64 CPUs on a fully loaded CONNECT-IP tunnel

* Much more punishing on RISC-V architecture since it does not have add-
with-carry instruction

* Wait... isn’t checksum always set by sender? And don’t we need to
produce valid checksum to the receiver?

CONNECT-IP optimizations - MASQUE - IETF124 6



Checksum must be computed by somebody

* Normally checksum is computed by NIC when packet is sent out

* But:
Host Host
Process
originating flow
: 2 Userland
rocess
8 P
z S
Z
— p
@) Z
— m
o O
o T
%
There is no NIC to offload L4 checksum of original packet Tun/tap interface with GSO does not provide checksums

It is computed on CPU by kernel or CONNECT-IP process Without GSO tunnelinterface is limited by ~500kpps
CONNECT-IP optimizations - MASQUE - IETF124 7



Checksum may not be required on the
receiver side

Host

Process
terminating flow

23
U
O
L
Z
Z
O
O

Host

Tun/Tap

Userland
process

CONNECT-IP optimizations - MASQUE - IETF124

o
T
O
L
Z
z
O
O

Host

NIC with
checksum offload

Userland
process

A
T
O
LLl
Z
z
O
O




Common way to signal checksum offloading

* Process (or driver) and NIC agree on the capability
* TCP and UDP packets do include checksum of the pseudo-header

* Metadata structure associated with each packet includes

* Offset to the checksum
* Offset to the beginning of TCP/UDP header

* NIC calculates 1-complement and places the reconstructed
checksum into packet

* Relevant APIs are available in XDP, Tun/Tap and other interfaces

* https://www.kernel.org/doc/htmUl/v6.17/networking/checksum-
offloads.html

CONNECT-IP optimizations - MASQUE - IETF124 9


https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html
https://www.kernel.org/doc/html/v6.17/networking/checksum-offloads.html

Checksum offloading in CONNECT-IP

* Each party signals if it supports incoming packets with TCP/UDP
checksum offload

* Sender indicates offloaded checksum when defining context id

e Checksum offset
e Start of checksummed data

* Packets still include checksum of the pseudo-header

CONNECT-IP optimizations - MASQUE - IETF124 10



Proposed Capsules

CONNECT IP OPTIMIZATION CREATE Capsule {
Type (1) = CONNECT IP OPTIMIZATION CREATE,
Length (1),

Context ID (1),

Static Segments Length (1)
Static Segments (..) ...,
Checksum Field Offset (1) ?,
Checksum Start Offset (1) ?,

Static Segment {
Segment Offset (1),
Segment Length (1),
Segment Payload,

CONNECT IP OPTIMIZATION DELETE Capsule {
Type (1) = CONNECT IP OPTIMIZATION DELETE,
Length (1),

Context ID (1),

CONNECT-IP optimizations - MASQUE - IETF124

11



Future development based on initial feedback

* Extend scope to all Datagrams (Connect-UDP and Datagram
Capsules)
* How to combine this with ECN/DSCP Context id?

* Generalize optimizations to TLVs with IANA registry
* Sometimes itis beneficialto omit L4 checksums completely
* |[Pv4 header checksum may be omitted
* Other optimizations could be added in the future

CONNECT-IP optimizations - MASQUE - IETF124 12



Next steps

* Thoughts?
* Suggestions?
e Comments?

CONNECT-IP optimizations - MASQUE - IETF124

13



	Slide 1: draft-rosomakho-masque-connect-ip-optimizations-00
	Slide 2: Challenges with CONNECT-IP implementation
	Slide 3: Reusable templates
	Slide 4: Splitting packet into segments
	Slide 5: Notes about templating
	Slide 6: TCP/UDP Checksum offloading
	Slide 7: Checksum must be computed by somebody
	Slide 8: Checksum may not be required on the receiver side
	Slide 9: Common way to signal checksum offloading
	Slide 10: Checksum offloading in CONNECT-IP
	Slide 11: Proposed Capsules
	Slide 12: Future development based on initial feedback
	Slide 13: Next steps

