EBERHARD KARLS

G5\ UNIVERSITAT
w TUBINGEN

EXPERTS.

| |
h
Nl

! ’Hl{

. |ETF 124 Montreal

=3 -
= '\ﬁ :
Eamasi = LG8 T

vy S
HIHITF

m /jonasprimbs

Browser-Swapping Attacks

By Jonas Primbs, SySS GmbH | University of Tubingen
https://www.syss.de | https://kn.cs.uni-tuebingen.de

https://www.linkedin.com/in/jonasprimbs/

EBERHARD KARLS

6 UNIVERSITAT

e B Authorization Code Flow

=]

Client Backend User Agent Authorization Server

. | |
User: 1. Open

-

ET / HTTP/1.1
ost: client.example.com

I o

2. Authorization Request

HTTP/1.1 302 Found

Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3

3. Authorization Request

>
GET /authorize? |
response_type=code& |
redirect_uri=https%3A%2F%2Fclient.example.com¥%2Fcallback&
client_id=s6BhdRkqt3 HTTP/1.1 4. AuthN
Host: as.example.com I & AuthZ

5. Authorization Response

6. Authorization Response HTTP/1.1 302 Found
Location: https://client.example.com/callback?

|
|
|
GET /callback? | code=Sp1x10BeZQQYbYSEWXSbIA
|
I

x

code=Sp1x10BeZQQYbYSEWXSbIA HTTP/1.1
Host: client.example.com

7. Token Request Logged in as

User

>
POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=Splx10BeZQQYbYSEWXSbIA&
client_id=s6BhdRkqt3&

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
redirect_uri=https%3A%2F%2Fclient.example.com¥%2Fcallback :
|

Jonas Primbs — Browser-Swapping Attacks 2

EBERHARD KARLS

6 UNIVERSITAT

s ORI Cross-Site Request Forgery (CSRF) Attack

=]

Client Backend User Agent Authorization Server

. I I I
Attacker: | 1. Open

B
| GET / HTTP/1.1
Host: client.example.com

2. Authorization Request

HTTP/1.1 302 Found

Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3

3. Authorization Request

|

|

|

|

|

|

|

|

|

>

GET /authorize? |
response_type=code& |
redirect_uri=https%3A%2F%2Fclient.example.com¥%2Fcallback&
client_id=s6BhdRkqt3 HTTP/1.1 4. AuthN

Host: as.example.com I & AuthZ

|
|
| o
CSRF 5. Authorization Response

6. Authorization Response =~ HTTP/1.1 302 Found
Location: https://client.example.com/callback?

|
User: |
|

GET /callback? | code=AIbSxW6SYbYQQZeBO1x1pS
|
|

x

code=AIbSxW6SYbYQQZeBOlx1pS HTTP/1.1
Host: client.example.com

7. Token Request Logged in as

Attacker

>
POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=AIbSxW6SYbYQQZeBO1x1pS&
client_id=s6BhdRkqt3&

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
redirect_uri=https%3A%2F%2Fclient.example.com¥%2Fcallback :
|

Jonas Primbs — Browser-Swapping Attacks 3

EBERHARD KARLS

6 UNIVERSITAT

s ORI Cross-Site Request Forgery (CSRF) Prevention

=]

Client Backend User Agent Authorization Server

. I I I
Attacker: | 1. Open

B
| GET / HTTP/1.1
Host: client.example.com

| |
| |
| |
I | I
g | : |
Remember : 2. Authorization Request I :
state=zyx } > | |
: HTTP/1.1 302 Found : 3. Authorization Request :
I Location: https://as.example.com/authorize? f ’I
| response_type=code& | GET /authorize? |
| redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback& | response_type=code& |
I client_id=s6BhdRkqt3& | redirect_uri=https%3A%F%2Fclient.example.com#2Fcallback& |
: state=zyx : client_id=s6BhdRkqt3& ! 4. AuthN
| | state=zyx HTTP/1.1 & AuthZ
g | | Host: as.example.com
Remember I I
state=xyz I CSRF | 5. Authorization Response
! <
User: : 6. Authorization Response =~ : HTTP/1.1 302 Found
ﬂ | Location: https://client.example.com/callback?
GET /callback? | code=AIbSxW6SYbYQQZeBO1x1pS&
zyx:xyz? code=AIbSxW6SYbYQQZeBO1x1pS& : state=zyx

state=zyx HTTP/1.1
Host: client.example.com

[
[
|
[
[
|
|

7. Token Request

CSRF detected!

>

Jonas Primbs — Browser-Swapping Attacks 4

EBERHARD KARLS

6 UNIVERSITAT

s ORI What happens to the Authorization Code?

=]

Client Backend User Agent Authorization Server

. I I I
Attacker: | 1. Open

B
| GET / HTTP/1.1
Host: client.example.com

| |
| |
| |
| : |
g | |
Remember | ! o ' '
I 2. Authorization Request I I
state=zyx } | |
: HTTP/1.1 302 Found : 3. Authorization Request :
I Location: https://as.example.com/authorize? f ’I
| response_type=code& | GET /authorize? |
| redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback& | response_type=code& |
I client_id=s6BhdRkqt3& I redirect_uri=https%3A%2F%2Fclient.example. comé2Fcallback& |
: state=zyx : client_id=s6BhdRkqt3& ! 4. AuthN
| | state=zyx HTTP/1.1 & AuthZ
g | | Host: as.example.com
Remember I I
state=xyz | | CSRF | 5. Authorization Response
! <
User: : 6. Authorization Response =~ : HTTP/1.1 382 Found
ﬂ | Location: https://client.example.com/callback?
| GET /callback? | code=AIbSxW6SYbYQQZeBO1x1pS&
ZVX=XVZ? | code=AIbSxW6SYbYQQZeBO1x1pS& | state=zyx
yX=xyz:< §, state=zyx HTTP/1.1 - ? '
I Host: client.example.com H
|
|
I

7. Token Request

CSRF detected!

>

Jonas Primbs — Browser-Swapping Attacks 5

EBERHARD KARLS

6 UNIVERSITAT

N : -
e REBINCI R The Authorization Code remains valid!

=]

Client Backend User Agent Authorization Server

. I I I
Attacker: | 1. Open

B
| GET / HTTP/1.1
Host: client.example.com

| |
| |
| |
I | I
g | : |
Remember : 2. Authorization Request I :
state=zyx } > | |
: HTTP/1.1 302 Found : 3. Authorization Request :
I Location: https://as.example.com/authorize? f ’I
| response_type=code& | GET /authorize? |
| redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback& | response_type=code& |
I client_id=s6BhdRkqt3& I redirect_uri=https%3A%2F%2Fclient.example.com#2Fcallback& |
: state=zyx : client_id=s6BhdRkqt3& ! 4. AuthN
| | state=zyx HTTP/1.1 & AuthZ
g | | Host: as.example.com
Remember I I
- | | . izati
state=xyz | CSRF < 5. Authorization Response
User: : 6. Authorization Response =~ : HTTP/1.1 302 Found
ﬂ | Location: https://client.example.com/callback?
GET /callback? | code=AIbSxW6SYbYQQZeBO1x1pS&
zyx:xyz? code=AIbSxW6SYbYQQZeBO1x1pS& | state=zyx
state=zyx HTTP/1.1 Remains Valid! I

Host: client.example.com

[
[
|
[
[
|
|

7. Token Request

CSRF detected!

>

Jonas Primbs — Browser-Swapping Attacks 6

EBERHARD KARLS

6 UNIVERSITAT

s ORI Browser-Swapping Attack — User Steps

=] m

Client Backend User Agent Authorization Server

. I I I
Attacker: | 1. Open

B
| GET / HTTP/1.1
Host: client.example.com

| |
| |
| |
I | I
g | : |
Remember : 2. Authorization Request I :
state=zyx] >| CSRF |
] : HTTP/1.1 302 Found :/ 3. Authorization Request :
User: I Location: https://as.example.com/authorize? ' »I
| response_type=code& | GET /authorize? |
| redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback& | response_type=code& |
I client_id=s6BhdRkqt3& I redirect_uri=https%3A%2F%2Fclient.example.com#2Fcallback& |
: state=zyx : client_id=s6BhdRkqt3& | 4. AuthN
| | state=zyx HTTP/1.1 & AuthZ
g | | Host: as.example.com
Remember I I
state=xyz : :4 5. Authorization Response
: 6. Authorization Response : HTTP/1.1 302 Found
ﬂ | Location: https://client.example.com/callback?
GET /callback? | code=Sp1x10BeZQQYbYSEWXSbIA&
zyx:xyz? code=Sp1x10BeZQQYbYSEWXSbIA& | state=zyx

state=zyx HTTP/1.1 — Remains Valid! !

Host: client.example.com

[
[
|
[
[
|
|

7. Token Request

CSRF detected!

>

Jonas Primbs — Browser-Swapping Attacks 7

EBERHARD KARLS

6 UNIVERSITAT

s ORI Browser-Swapping Attack — Attacker Steps

=]

Client Backend User Agent Authorization Server

. I I I
Attacker: | 1. Open

B
| GET / HTTP/1.1
Host: client.example.com

|
]
|
| |
| :
| .
Remember | | 2. Authorization Request |
state=zyx } | CSRF
] : HTTP/1.1 382 Found :/ 3. Authorization Request
User: I Location: https://as.example.com/authorize? ' >
| response_type=code& | GET /authorize? |
| redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback& | response_type=code& I
| client_id=s6BhdRkqt3& | redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
: state=zyx : client_id=s6BhdRkqt3& | 4. AuthN
| | state=zyx HTTP/1.1 & AuthZ
I | Host: as.example.com
| |
: :4 5. Authorization Response
Attacker- | 6. Authorization Response Repeat! | HTTP/1.1 302 Found
’ ﬂ | Location: https://client.example.com/callback?
GET /callback? | code=Sp1x10BeZQQYbYSEWXSbIA&
zyx:zyx? code=Sp1x10BeZQQYbYSEWXSbIA& : state=zyx

|
|
| state=zyx HTTP/1.1
: Host: client.example.com
|
|
|l
|
|
|
|
|
|
|
|
|
|

7. Token Request Logged in as

User

>
POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=Splx10BeZQQYbYSEWXSbIA&
client_id=s6BhdRkqt3&

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
redirect_uri=https%3A%2F%2Fclient.example.com¥%2Fcallback :
|

Jonas Primbs — Browser-Swapping Attacks 8

EBERHARD KARLS

(§yss\ UNIVERSITAT
= & TUBINGEN

» URL sharing

= Users might share their full URL, including query
parameters

= Solution: Redirect to sanitized URL after login
— Especially on error!

How can the Authorization Code be leaked?

(" Use this link:
https://as.example.com/authorize?respons
e_type=code&client_id=s6BhdRkqgt3&redirec
t _uri=https%3A%2F%2Fclient.example.com?%2
_ Fcallback&state=zyx

Attacker

It says, “error:]

‘ {state mismatch”?!

User Impossible! On which
URL are you?

\ @

) N\ Attacker
https://client.example.com/callb
- ack?code=Sp1lx10BeZQQYbYS6WXSbIA&
state=zyx)
User 1
Hmm, works for me,
thanks! (evil laugh)) n

Attacker

Jonas Primbs — Browser-Swapping Attacks

EBERHARD KARLS
@@ UNIVERSITAT
sav TUBINGEN

How can the Authorization Code be leaked?

» URL sharing

= Users might share their full URL, including query
parameters

= Solution: Redirect to sanitized URL after login
— Especially on error!

» The Referer-header .
GET /favicon.ico HTTP/1.1

= Sent to third-party websites in on link-navigation or Host: external.example. com
. Referer: https://client.example.com/callback?code=Splx10BezZQQYbYS6WxSbIA&state=zyx
when requesting external content

= Solution: Referrer-Policy: no-referrer

Jonas Primbs — Browser-Swapping Attacks 10

@ L el How can the Authorization Code be leaked?

TUBINGEN

» URL sharing

= Users might share their full URL, including query
parameters

= Solution: Redirect to sanitized URL after login
— Especially on error!

» The Referer-header

= Sent to third-party websites in on link-navigation or
when requesting external content

= Solution: Referrer-Policy: no-referrer

» Analytics tools
= Google Analytics & Facebook Pixel record full URLs
= Solution: No analytics tools on redirect URI

Jonas Primbs — Browser-Swapping Attacks 11

EBERHARD KARLS
@ﬁ UNIVERSITAT
sav TUBINGEN

How can the Authorization Code be leaked?

» URL sharing
= Users might share their full URL, including query

parameters
= Solution: Redirect to sanitized URL after login

— Especially on error!

» The Referer-header
= Sent to third-party websites in on link-navigation or
when requesting external content

= Solution: Referrer-Policy: no-referrer

» Analytics tools
= Google Analytics & Facebook Pixel record full URLs

= Solution: No analytics tools on redirect URI

» Logging
= Clients, proxies and servers typically log full URLs

= Logs are reported to centralized monitoring systems

—

/ Monitoring
Client HTTP Pro \ ‘
(Browser) > Log access

_
sufficient]
\ Reverse Proxy Client
Q Load Balancer Backend
- Log access - Log access
Extensions sufficient sufficient

(WAF, IDPS, SIEM, ...)

- Often provided by external
third-party service providers

12

Jonas Primbs — Browser-Swapping Attacks

@@ L el Browser-Swapping Prevention

TUBINGEN

» Proof Key for Code Exchange (PKCE)?

Jonas Primbs — Browser-Swapping Attacks 13

EBERHARD KARLS

6 UNIVERSITAT
=0 TUBINGEN

EXPERTS

Browser-Swapping Prevention: PKCE

Client Backend

Attacker: l 1. Open
¢

]

User Agent

I GET / HTTP/1.1
Host: client.example.com
Remember

2. Authorization Request
state=zyx

CSRF

Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkgt3&
state=zyx&code_challenge_method=5256&

|
g |
|
!
: HTTP/1.1 302 Found
|
|
|
|
|
: code_challenge=E9Melhoa20wvFrEMTIguCH..WbuGISstw-cM
|
|
|
|
|

User: 6. Authorization Response

Repeat!

F/

|
|
|
|
|
|
|
: 3. Authorization Request
I
|
|
|
|
|
|
|
|

>
GET /authorize?
response_type=code& {
redirect_uri=https%3A%2F%2Fcli .example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx&code_challenge_method=5256&
code_challenge=ESMelhoa20wvFrEMI IguCH. WbuGISstw-cM HTTP/1.1 |
Host: as.example.com
5. Authorization Response

HTTP/1.1 302 Found

>
GET /callback?
code=Sp1x10BeZQQYbYSEWXSbIA&
state=zyx HTTP/1.1

ZyX=zyXx?

7. Token Request

|
|
| Location: https://client.example.com/callback?
| code=Sp1x10BeZQQYbYSEWXSbIA&

| state=zyx

|

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=Splx10BeZQQYbYSEWXSbIA&

client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com¥%2Fcallback&

|

|

> |

: Host: client.example.com
|

|

|l

|

|

|

|

|

|

|

|

: code_verifier=

>

|
|
|
|
|
|
|
|
|
|
|
|
:qi
|
|
|
|
|
|
|
I

Authorization Server

Defined by attacker!

4. AuthN
& AuthZ

Remember

Check
code_verifier

Logged in as
User

Jonas Primbs — Browser-Swapping Attacks

14

EBERHARD KARLS
@@ UNIVERSITAT
sz TUBINGEN

Browser-Swapping Prevention

» Proof Key for Code Exchange (PKCE) = No!
= PKCE protects the attacker!

Jonas Primbs — Browser-Swapping Attacks 15

Browser-Swapping Prevention

EBERHARD KARLS -
@@ UNIVERSITAT

TUBINGEN
» Proof Key for Code Exchange (PKCE) = No!
= PKCE protects the attacker! T ”
misconfigured — No critical
referrer-policy logs

e — ik,

» response_mode=fragment
= Works for user-side (public) clients /'
Monitoring

— Web Apps = code parameter must be removed

on errors
— Mobile Apps
Client HTTP Proxy
(Browser) = No code

_
parameter L
Reverse Proxy Client
a Load Balancer Backend
- No code - No code
Extensions parameter parameter
(WAF, IDPS, SIEM, ...)
- No code

parameter

16

Jonas Primbs — Browser-Swapping Attacks

EBERHARD KARLS

G\ UNIVERSITAT
s TUBINGEN

Browser-Swapping Prevention

» Proof Key for Code Exchange (PKCE) = No!

= PKCE protects the attacker! _
- No code in - No critical

referrer header logs

» response_mode=fragment * - m
= Works for user-side (public) clients
— Web Apps = code parameter must be removed / Monitoring
on errors
— Mobile Apps / ‘
» response_mode=form_post Client —HTTP Prosfu”\‘
_

(Browser) - require

= Works for server-side (confidential) clients access e
Reverse Proxy Client
Q Load Balancer Backend
- Requires full - Requires full
EXtenSionS access access

(WAF, IDPS, SIEM, ...)

- Requires full access
to body parameters

Jonas Primbs — Browser-Swapping Attacks 17

@ L el Browser-Swapping Prevention

TUBINGEN

>

» response_mode=fragment

= Works for user-side (public) clients \
— Web Apps = code parameter must be removed Can be downgraded to

on errors response_mode=query!
— Mobile Apps

» response_mode=form_post
= Works for server-side (confidential) clients

Jonas Primbs — Browser-Swapping Attacks 18

@ L el Browser-Swapping Prevention

TUBINGEN

>

» Additional: Invalidate authorization codes suspected of CSRF attacks
= Clients should always notify the authorization server of used authorization codes
= OAuth 2.1 v14 only specifies invalidation after a successful token request

Jonas Primbs — Browser-Swapping Attacks 19

EBERHARD KARLS
@@ UNIVERSITAT
i TUBINGEN

Recommendations for OAuth 2.1

1. Deprecate response_mode=query
= No secrets (authorization code) in query parameters!

Jonas Primbs — Browser-Swapping Attacks

20

@ L el Recommendations for OAuth 2.1

TUBINGEN

1. Deprecate response_mode=query
= No secrets (authorization code) in query parameters!

2. Response mode enforcement must be mandatory for authorization servers
* Prevents downgrading attacks

Jonas Primbs — Browser-Swapping Attacks 21

f

é@ UNIVERSITAT

EBERHARD KARLS

Recommendations for OAuth 2.1

TUBINGEN

1. Deprecate response_mode=query
= No secrets (authorization code) in query parameters!

2. Response mode enforcement must be mandatory for authorization servers
* Prevents downgrading attacks

3. Specification of an authorization code invalidation mechanism
= Provides clients with the ability to invalidate used authorization codes at the authorization server

Jonas Primbs — Browser-Swapping Attacks 22

	Slide 1: Browser-Swapping Attacks
	Slide 2: Authorization Code Flow
	Slide 3: Cross-Site Request Forgery (CSRF) Attack
	Slide 4: Cross-Site Request Forgery (CSRF) Prevention
	Slide 5: What happens to the Authorization Code?
	Slide 6: The Authorization Code remains valid!
	Slide 7: Browser-Swapping Attack – User Steps
	Slide 8: Browser-Swapping Attack – Attacker Steps
	Slide 9: How can the Authorization Code be leaked?
	Slide 10: How can the Authorization Code be leaked?
	Slide 11: How can the Authorization Code be leaked?
	Slide 12: How can the Authorization Code be leaked?
	Slide 13: Browser-Swapping Prevention
	Slide 14: Browser-Swapping Prevention: PKCE
	Slide 15: Browser-Swapping Prevention
	Slide 16: Browser-Swapping Prevention
	Slide 17: Browser-Swapping Prevention
	Slide 18: Browser-Swapping Prevention
	Slide 19: Browser-Swapping Prevention
	Slide 20: Recommendations for OAuth 2.1
	Slide 21: Recommendations for OAuth 2.1
	Slide 22: Recommendations for OAuth 2.1

