
https://www.syss.de | https://kn.cs.uni-tuebingen.de

Browser-Swapping Attacks

By Jonas Primbs, SySS GmbH | University of Tübingen

IETF 124 Montréal

/jonasprimbs

https://www.linkedin.com/in/jonasprimbs/


Authorization Code Flow

Jonas Primbs – Browser-Swapping Attacks 2

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3 HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=SplxlOBeZQQYbYS6WxSbIA

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=SplxlOBeZQQYbYS6WxSbIA&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3

GET /callback?
code=SplxlOBeZQQYbYS6WxSbIA HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request Logged in as

User

User:



Cross-Site Request Forgery (CSRF) Attack

Jonas Primbs – Browser-Swapping Attacks 3

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3 HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=AIbSxW6SYbYQQZeBOlxlpS

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=AIbSxW6SYbYQQZeBOlxlpS&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3

GET /callback?
code=AIbSxW6SYbYQQZeBOlxlpS HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request Logged in as

Attacker

Attacker:

User:

CSRF



Cross-Site Request Forgery (CSRF) Prevention

Jonas Primbs – Browser-Swapping Attacks 4

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=AIbSxW6SYbYQQZeBOlxlpS&
state=zyx

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=AIbSxW6SYbYQQZeBOlxlpS&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx

GET /callback?
code=AIbSxW6SYbYQQZeBOlxlpS&
state=zyx HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request
CSRF detected!

Attacker:

Remember

state=xyz

zyx=xyz?

User:

CSRF

Remember

state=zyx



What happens to the Authorization Code?

Jonas Primbs – Browser-Swapping Attacks 5

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=AIbSxW6SYbYQQZeBOlxlpS&
state=zyx

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=AIbSxW6SYbYQQZeBOlxlpS&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx

GET /callback?
code=AIbSxW6SYbYQQZeBOlxlpS&
state=zyx HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request

Attacker:

Remember

state=xyz

zyx=xyz?

User:

CSRF detected!

?

CSRF

Remember

state=zyx



The Authorization Code remains valid!

Jonas Primbs – Browser-Swapping Attacks 6

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=AIbSxW6SYbYQQZeBOlxlpS&
state=zyx

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=AIbSxW6SYbYQQZeBOlxlpS&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx

GET /callback?
code=AIbSxW6SYbYQQZeBOlxlpS&
state=zyx HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request

Attacker:

CSRF
Remember

state=xyz

zyx=xyz?

User:

Remains valid!

CSRF detected!

Remember

state=zyx



Browser-Swapping Attack – User Steps

Jonas Primbs – Browser-Swapping Attacks 7

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=SplxlOBeZQQYbYS6WxSbIA&
state=zyx

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=SplxlOBeZQQYbYS6WxSbIA&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx

GET /callback?
code=SplxlOBeZQQYbYS6WxSbIA&
state=zyx HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request

zyx=xyz?

CSRF

Attacker:

Remember

state=xyz

CSRF detected!

Remains valid!

User:

Remember

state=zyx



Browser-Swapping Attack – Attacker Steps

Jonas Primbs – Browser-Swapping Attacks 8

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=SplxlOBeZQQYbYS6WxSbIA&
state=zyx

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=SplxlOBeZQQYbYS6WxSbIA&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx

GET /callback?
code=SplxlOBeZQQYbYS6WxSbIA&
state=zyx HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request

zyx=zyx?

Remember

state=zyx

Attacker:

User:

Repeat!

Logged in as

User

CSRF

Attacker:



How can the Authorization Code be leaked?

► URL sharing

▪ Users might share their full URL, including query 

parameters

▪ Solution: Redirect to sanitized URL after login

− Especially on error!

Jonas Primbs – Browser-Swapping Attacks 9

User

Attacker

It says, “error: 

state mismatch”?!

Attacker

Use this link: 
https://as.example.com/authorize?respons
e_type=code&client_id=s6BhdRkqt3&redirec
t_uri=https%3A%2F%2Fclient.example.com%2

Fcallback&state=zyx

Impossible! On which 

URL are you?

User

https://client.example.com/callb
ack?code=SplxlOBeZQQYbYS6WxSbIA&

state=zyx

Attacker

Hmm, works for me, 

thanks! (evil laugh)



How can the Authorization Code be leaked?

► URL sharing

▪ Users might share their full URL, including query 

parameters

▪ Solution: Redirect to sanitized URL after login

− Especially on error!

► The Referer-header

▪ Sent to third-party websites in on link-navigation or 

when requesting external content

▪ Solution: Referrer-Policy: no-referrer

Jonas Primbs – Browser-Swapping Attacks 10

GET /favicon.ico HTTP/1.1
Host: external.example.com
Referer: https://client.example.com/callback?code=SplxlOBeZQQYbYS6WxSbIA&state=zyx



How can the Authorization Code be leaked?

► URL sharing

▪ Users might share their full URL, including query 

parameters

▪ Solution: Redirect to sanitized URL after login

− Especially on error!

► The Referer-header

▪ Sent to third-party websites in on link-navigation or 

when requesting external content

▪ Solution: Referrer-Policy: no-referrer

► Analytics tools

▪ Google Analytics & Facebook Pixel record full URLs

▪ Solution: No analytics tools on redirect URI

Jonas Primbs – Browser-Swapping Attacks 11



How can the Authorization Code be leaked?

► URL sharing

▪ Users might share their full URL, including query 

parameters

▪ Solution: Redirect to sanitized URL after login

− Especially on error!

► The Referer-header

▪ Sent to third-party websites in on link-navigation or 

when requesting external content

▪ Solution: Referrer-Policy: no-referrer

► Analytics tools

▪ Google Analytics & Facebook Pixel record full URLs

▪ Solution: No analytics tools on redirect URI

► Logging

▪ Clients, proxies and servers typically log full URLs

▪ Logs are reported to centralized monitoring systems

Jonas Primbs – Browser-Swapping Attacks 12

Client

(Browser)

HTTP Proxy

CDN

Reverse Proxy

Load Balancer

Client

Backend

→ Static content, but
referer header

→ Problem on shared

workstations

→ Log access

sufficient

Monitoring

→ Log access

sufficient

→ Log access

sufficient

→ Access

required

Extensions

(WAF, IDPS, SIEM, …)

→ Often provided by external 

third-party service providers



Browser-Swapping Prevention

► Proof Key for Code Exchange (PKCE)?

Jonas Primbs – Browser-Swapping Attacks 13



Browser-Swapping Prevention: PKCE

Jonas Primbs – Browser-Swapping Attacks 14

GET /authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx&code_challenge_method=S256&
code_challenge=E9Melhoa2OwvFrEMTJguCH…WbuGJSstw-cM HTTP/1.1

Host: as.example.com

HTTP/1.1 302 Found
Location: https://client.example.com/callback?
code=SplxlOBeZQQYbYS6WxSbIA&
state=zyx

3. Authorization Request

5. Authorization Response

4. AuthN

& AuthZ

POST /token HTTP/1.1
Host: as.example.com

grant_type=authorization_code&
code=SplxlOBeZQQYbYS6WxSbIA&
client_id=s6BhdRkqt3&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

GET / HTTP/1.1
Host: client.example.com

HTTP/1.1 302 Found
Location: https://as.example.com/authorize?
response_type=code&
redirect_uri=https%3A%2F%2Fclient.example.com%2Fcallback&
client_id=s6BhdRkqt3&
state=zyx&code_challenge_method=S256&
code_challenge=E9Melhoa2OwvFrEMTJguCH…WbuGJSstw-cM

GET /callback?
code=SplxlOBeZQQYbYS6WxSbIA&
state=zyx HTTP/1.1

Host: client.example.com

Authorization ServerClient Backend User Agent

1. Open

2. Authorization Request

6. Authorization Response

7. Token Request

zyx=zyx?

Remember

state=zyx

Attacker:

User: Repeat!

Logged in as

User

Remember

code_challenge

Check

code_verifier

Defined by attacker!

CSRF



Browser-Swapping Prevention

► Proof Key for Code Exchange (PKCE) → No!

▪ PKCE protects the attacker!

Jonas Primbs – Browser-Swapping Attacks 15



Browser-Swapping Prevention

► Proof Key for Code Exchange (PKCE) → No!

▪ PKCE protects the attacker!

► response_mode=fragment

▪ Works for user-side (public) clients

− Web Apps → code parameter must be removed

on errors

− Mobile Apps

Jonas Primbs – Browser-Swapping Attacks 16

Client

(Browser)

HTTP Proxy

CDN

Reverse Proxy

Load Balancer

Client

Backend

→ Requires actively

misconfigured

referrer-policy

→ Problem on shared

workstations

→ No code
parameter

Monitoring

→ No code
parameter

→ No code
parameter

→ No critical

logs

Extensions

(WAF, IDPS, SIEM, …)

→ No code
parameter



Browser-Swapping Prevention

► Proof Key for Code Exchange (PKCE) → No!

▪ PKCE protects the attacker!

► response_mode=fragment

▪ Works for user-side (public) clients

− Web Apps → code parameter must be removed

on errors

− Mobile Apps

► response_mode=form_post

▪ Works for server-side (confidential) clients

Jonas Primbs – Browser-Swapping Attacks 17

Client

(Browser)

HTTP Proxy

CDN

Reverse Proxy

Load Balancer

Client

Backend

→ No code in

referrer header

→ Problem on shared

workstations

→ Requires full
access

Monitoring

→ Requires full
access

→ Requires full
access

→ No critical

logs

Extensions

(WAF, IDPS, SIEM, …)

→ Requires full access

to body parameters



Browser-Swapping Prevention

► Proof Key for Code Exchange (PKCE) → No!

▪ PKCE protects the attacker!

► response_mode=fragment

▪ Works for user-side (public) clients

− Web Apps → code parameter must be removed

on errors

− Mobile Apps

► response_mode=form_post

▪ Works for server-side (confidential) clients

Jonas Primbs – Browser-Swapping Attacks 18

Can be downgraded to

response_mode=query!



Browser-Swapping Prevention

► Proof Key for Code Exchange (PKCE) → No!

▪ PKCE protects the attacker!

► response_mode=fragment

▪ Works for user-side (public) clients

− Web Apps → code parameter must be removed

on errors

− Mobile Apps

► response_mode=form_post

▪ Works for server-side (confidential) clients

► Additional: Invalidate authorization codes suspected of CSRF attacks

▪ Clients should always notify the authorization server of used authorization codes

▪ OAuth 2.1 v14 only specifies invalidation after a successful token request

Jonas Primbs – Browser-Swapping Attacks 19



Recommendations for OAuth 2.1

1. Deprecate response_mode=query

▪ No secrets (authorization code) in query parameters!

Jonas Primbs – Browser-Swapping Attacks 20



Recommendations for OAuth 2.1

1. Deprecate response_mode=query

▪ No secrets (authorization code) in query parameters!

2. Response mode enforcement must be mandatory for authorization servers

▪ Prevents downgrading attacks

Jonas Primbs – Browser-Swapping Attacks 21



Recommendations for OAuth 2.1

1. Deprecate response_mode=query

▪ No secrets (authorization code) in query parameters!

2. Response mode enforcement must be mandatory for authorization servers

▪ Prevents downgrading attacks

3. Specification of an authorization code invalidation mechanism

▪ Provides clients with the ability to invalidate used authorization codes at the authorization server

Jonas Primbs – Browser-Swapping Attacks 22


	Slide 1: Browser-Swapping Attacks
	Slide 2: Authorization Code Flow
	Slide 3: Cross-Site Request Forgery (CSRF) Attack
	Slide 4: Cross-Site Request Forgery (CSRF) Prevention
	Slide 5: What happens to the Authorization Code?
	Slide 6: The Authorization Code remains valid!
	Slide 7: Browser-Swapping Attack – User Steps
	Slide 8: Browser-Swapping Attack – Attacker Steps
	Slide 9: How can the Authorization Code be leaked?
	Slide 10: How can the Authorization Code be leaked?
	Slide 11: How can the Authorization Code be leaked?
	Slide 12: How can the Authorization Code be leaked?
	Slide 13: Browser-Swapping Prevention
	Slide 14: Browser-Swapping Prevention: PKCE
	Slide 15: Browser-Swapping Prevention
	Slide 16: Browser-Swapping Prevention
	Slide 17: Browser-Swapping Prevention
	Slide 18: Browser-Swapping Prevention
	Slide 19: Browser-Swapping Prevention
	Slide 20: Recommendations for OAuth 2.1
	Slide 21: Recommendations for OAuth 2.1
	Slide 22: Recommendations for OAuth 2.1

