OAuth 2.0 Delegated Authorization

draft-li-oauth-delegated-authorization

Ruochen Li, Haiguang Wang, Chunchi Peter Liu, Tieyan Li

https://datatracker.ietf.org/doc/draft-li-oauth-delegated-authorization/

Delegated Authorization — Protocol Flow

7 1. Authorization

Request
[
Resource
Fommmmm-- + Fommmmmmmm e + 2. Authorization Owner
| |--(1)- Authorization Request -=| Resource | Grant
| | | Owner | <
| |<-(2)-- Authorization Grant ---| | .
Client
| | Siieielelieliel el * 3. Authorization
| | Grant
| | Fommmm e e mm e mm + t »
| |--(3)-- Authorization Grant -->| Authorization |) Authorization
| Client | | Server | e Server
| |<-(4)----- Access Token ------- | | < i}
| | Fommommmomoo oo + A
| | 5. Delegated
| | e ——————— - + G legated Access
| |--(5)----- Access Token ------ >| Resource | =ou S
| | | Server | e ¥— 5. Delegated
| |<-(6)--- Protected Resource ---| | Access Token
Fomm e o + e + -
Delegated Resource
Party 6. Protected Server

Delegated Authorization:

OAuth 2.0: * Client gets a delegation token (dt) from AS

* Clientissues a delegated access token (dat)

e Client uses the dat to delegate auth to Delegated Party (DP)
* Client uses the dat to access RS via DP

* Client gets an access token from AS, and
uses it to access RS

Problems: Key points:
* Down-scoping not possible... Digital-signature-linked token chain similar to PKI certs
* without Token Exchange* » only DATs are accepted by RS, DTs alone not accepted
* Token generation relies on AS * RO requests one token from AS, client performs down-scoping

e DATs generated locally

De

egated Authorization — Token Format (JWT

Delegation Token:
{ Delegated Access Token:
"protected": {
" _comment”: "to be basebdurl-encoded”, {
"alg": "H5256", "protected”: {
“typ": "JWT", "_comment”: "to be base64url-encoded",
"kid": "as-key-1" "alg": "R5256",
}. "typ": "JWT",
"payload”: { "kid": "delegation-key-1"
"_comment”: "to be base64url-encoded", },
"iss": "https://asl.example.com", "payload”: {
"sub": "user@example.com", "_comment": "to be base6durl-encoded",
"aud": "https://resl.example.com”, "iss": "user@example.com",
"iat": 1760946495, . "sub": "https://dpl.example.com"
P X — claj '
exp": 1763538495, mSEtdown-SCOpin "aud": "https://resl.example.com”,
"scope": "email:read email:send", \>"jaL": 1760950095,
"delegation_key": { dt "exp": 1768953695,
"kty": "RSA", embeddedin dat "scope": “"email:read"”,
"n": "xoGV-drpIhwQ9Q3M50U0A4Y76j4r@c2Yc)oPT2qUd8UxV1PZHE1TGZUbdUAd — T "delegationToken": "eyJhbGci0iJIUzI1NiIsInRScCI6GIkpXVCISImtpZCI6ImFz
8ned wj .
¥ Wwith Par8ntdt's dk ~"signature": "r504a3d3NMN7vZ10BSP4qPLbHyy12bZH5Ha3DZATa8NUdHYPJBMieiS1
I }
"signature": "1gR7TSa8ft8Wt4ZASHULFTYW2uAwB6X2pFRrq9jDoQqQ" 4 = L
¥
4 I >

T DAT

Support authorization code grant, etc.

Rich Authorization Request (in addition to scope)
Delegated Authorization header, DP metadata

RS local verification of DAT & token introspection

DT supports encrypted tokens (JWE). DAT supports sign-then-encrypt tokens

Delegated Authorization — Use Scenarios

Case 1: Case 3: Case 5:
Trust-Boundary-1 Trust-Boundary-2 Trust-Boundary Trust-Boundary-1 Trust-Boundary-2
rdto
rdto rdto rdto rdto rdto rdto fat1
dt0 +dat +dat dt0 +dat +dat dto +dtl +dtl +dat
P Client > DP P Target Resource —p Client P DP P Target Resource —»| Client | DP1 P DP2 P Target Resource
Server Server Server
Case 2:
Case 4: Case 6:
Trust-Boundary-1 Trust-Boundary-2 a 1
T -B - T -B -
Trust-Boundary rust-Boundary rust-Boundary-2
rdto
dt0 dt0
rdto fdt1 [dto r r
dto +dtl +dat ato fac1 rdto fat1 fata
——p Client » DP P Target Resource r dto +dtl +dt2 |'dt2
Server dto) +dtl _ +dat —»| cClient P DP1 P DP2 +dat Target Resource
—»| Client »| DP P Target Resource > Server
Server

Cases 1, 3:

DT - DAT

Client to issue DAT

e DT - ..—-> DT - DAT
e Client/DPs to issue DT/DAT

Cases 2,4, 5, 6 (yet to be added to the draft):

Comparison with RFC8693 Token Exchange

Token Exchange / Transaction Token Delegated Authorization

Creating output tokens involves an external service (STS) Creating subordinate tokens does not involve external services

Output token not tightly linked with input token Subordinate token directly linked to the superior delegation token

Token exchange normally happens within the trust domain of the Delegation can happen at any node along the invocation chain, including
target resource the original OAuth client and intermediate third party services

Input tokens are valid access tokens Delegation tokens are NEVER used as access tokens. Only delegated

access tokens are accepted as access tokens.

Future Work

* Define token format for DT, DAT
* Multiple layers of delegation (multiple DPs in the middle)
* Multiple DTs in a request (DP to access multiple backend RSes)

Comments / Feedbacks?

