

BTNS Core

draft-ietf-btns-core-00.txt
Nicolas.Williams@sun.com

PAD and BTNS Extensions

● PAD extensions
– Wildcard matching extension

● Match any peer public key

– Last PAD entry should use this wildcard to match
BTNS peers (if desired)

– Peer IDs for BTNS peers are coerced to a new ID
type (PUBLICKEY) whose value is a peer’s public
key as used to authenticate it
● Specific to KEs and peers that use public keys for auth.

● BTNS extension: “BTNS_OK’ flag

Example

● Node A generates a private/public key pair and a
self-signed cert for that public key

● Node A initiates IKE exchange with node B using
that key and cert

● Node A matches BTNS catch-all PAD entry in
node B’s PAD

● Assuming node B matches a PAD entry on node
A and all works out then an SA pair is installed in
the two nodes’ SADBs

Example

● Node A’s traffic to node B needs to match
BTNS_OK SPD entries (searched for according
to the matching PAD BTNS entry) in order to
move

● Node B may or may not be a BTNS node, but it
must be authorized by node A’s PAD accordingly

Connection Latching

draft-ietf-btns-connection-latching-00.txt
Nicolas.Williams@sun.com

What it is

● Binding of logical packet flows (“connections”) to
series of SAs which share common criteria,
particularly peer IDs, but also algorithms, etc..

● Latching happens on send/receive of a packet
flow’s first packet

● Specified in very general terms: who (IPsec, IP,
ULP or application) passes what to whom

How it Works

● Optional: app may provide some parameters to
bind to (e.g., ESP/AH, algs, key lengths to use)

● ULP passes a latch template down with initial
packet on output to IP/IPsec
– IPsec initiates KE if need be (according to policy and

latch template), fills in the latch template (shared with
or passed back to ULP)

● On inbound IPsec passes SA# up to ULP
– ULP fills in a latch on initial packet based on SA

characteristics or checks that the SA matches
existing latch, else drop

