
iSCSI implementer’s Guide Update

Mallikarjun Chadalapaka
Hewlett-Packard Company

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 2

Agenda

• Goals

• Response Fence

• FastMultiTaskAbort

• Discussion/Questions

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 3

Goals

• Clarify the iSCSI specification (RFC 3720) where ambiguous

• Offer required implementation guidance where RFC 3720 is silent

• Fix defects where necessary

• Enhance RFC 3720 where there is a compelling case

• Complement RFC 3720, not replace it

• Update RFCs 3720, 3722, 3723, and 4173

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 4

Response Ordering

• Non-issue for single-connection iSCSI sessions

• When SCSI responses travel on multiple iSCSI connections back to a
SCSI initiator, SCSI SCSI response ordering is not guaranteed.

• Works fine for 99% of SCSI responses where SCSI doesn’t care
about response ordering

• Is an issue in the following cases identified so far:
− Multi-task abort scenarios (Abort Task Set, Clear Task Set etc.)
− Auto Contingent Allegiance (ACA) scenarios

• In short: whenever one SCSI response signals action taken on
multiple SCSI tasks and those tasks have differing connection
allegiances..

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 5

But….

• Response ordering semantics are very specific to SCSI.
− Would like to avoid (limit, to begin with) SCSI-specific code in iSCSI

layer
− Don’t want to update iSCSI RFCs every time SCSI implies a new

implied response ordering need on a new opcode.

• Proposal:
1. Abstract away the response ordering need into a new argument,

Response Fence, from SCSI iSCSI transport service call.
2. Guarantee response ordering at iSCSI level whenever Response

Fence is set.
3. Grandfather the two known SCSI ordering dependencies (Task

management & ACA) – i.e. always assume Response Fence for the
two.

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 6

Response Fence Model
Target

SCSI

iSCSI

TCP

*Send Command Complete (I_T_L_x Nexus, [Sense Data],
Status, Service Response, Response Fence)

If Response Fence is set:

• Response with Response Fence
MUST chronologically be delivered
after all the "preceding" responses
on the I_T_L nexus to the initiator.

• Response with Response Fence
MUST chronologically be delivered
prior to all the "following"
responses on the I_T_L nexus.

*Alternatively, this could be:

Task Management Function Executed

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 7

Target iSCSI action: Step.1
On Seeing Response Fence, note the last sent StatSN on each connection in the session.
Fence is established.

SCSI

iSCSI

Target

SCSI

iSCSI

Initiator

Send Command Complete (I_T_L_x Nexus, [Sense Data],
Status=K, Service Response, Response Fence)

StatSN=xStatSN=yStatSN=z
iSCSI

Session

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 8

Target iSCSI action: Step.2
Wait for the StatSN ack on each connection.

SCSI

iSCSI

Target

SCSI

iSCSI

Initiator

Status=K

ExpStatSN=x+1

ExpStatSN=y+1

ExpStatSN=z+1
iSCSI

Session

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 9

Target iSCSI action: Step.3
Send Status=K on the appropriate connection.

SCSI

iSCSI

Target

SCSI

iSCSI

Initiator

Status=K,
StatSN=y+1

iSCSI
Session

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 10

Target iSCSI action: Step.4
Wait for StatSN ack on Status=K. Hold back all the new responses.

SCSI

iSCSI

Target

SCSI

iSCSI

Initiator

iSCSI
Session

ExpStatSN=y+2

Status=K+1 Status=K+2

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 11

Target iSCSI action: Step.5
Release all waiting statuses as usual. Fence is lifted.

SCSI

iSCSI

Target

SCSI

iSCSI

Initiator

iSCSI
Session

Status=K+1,
StatSN=z+1 Status=K+2,

StatSN=x+1

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 12

Task Management: Problem statement

• Multi-task aborting with RFC 3720 semantics could take a long
time….
− CmdSN wait on third-party sessions
− TTT wait on issuing & third-party sessions
− Third-party StatSN acknowledgment waits

• If a task is hung on any initiator, TTT waits forever, the abort never
completes…..

• Wanted: a new efficient Task management model that does:
− Eliminate waits wherever possible
− Fully backward compatible with RFC 3720 implementations
− Should work identically for traditional iSCSI & RDMA-supported iSCSI
− No new SCSI-level requirements (e.g. TAS=1)

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 13

Proposal Outline

1. Eliminate CmdSN/StatSN wait - all cross-nexus wait summarily.
− Would still be SAM-2-compliant.

2. Define a new iSCSI key FastMultiTaskAbort.

3. When FastMultiTaskAbort=1….
1. Delink TTT invalidation from TMF completion. Allow TTT invalidation to

complete in a lazy fashion.
2. Introduce a new Async event for target iSCSI layer to rely on to free up

the TTTs (and the data buffers) – after the TMF is finished.
3. Allow an “escape hatch” for implementation-dependent timeout for TTT

reclaim (also must drop the connection)

4. When FastMultiTaskAbort = 0…..
1. Follow RFC 3720 semantics (i.e. TMF finishes only after TTTs are invalidated)

• CmdSN wait on third-party sessions
• TTT wait on issuing & third-party sessions
• Third-party StatSN acknowledgment waits

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 14

Why not simply require lazy behavior always?

Why not propose “lazy invalidation of active TTTs on the issuing
session” as the default behavior (i.e. without the new key)?

Such a mandate differs from the RFC 3720 behavior significantly.
1. RFC 3720 assumes TTTs and their associated buffers do not exist beyond

task termination.
2. RFC 3720 implies immediate re-usability of outstanding TTT-LUN pairs to

other tasks even on the same session-connection once the task that owns
a TTT is terminated.

3. RFC 3720 requires all Data-Out PDUs with an invalid ITT-TTT
combination (which it would be if ITT isn’t valid anymore) to be rejected.

4. RFC 3720 does not envision a lazy reclaim of TTTs, so does not have an
architected mechanism for a lazy reclaim of TTTs.

5. RFC 3720 requires that initiator should respond to active TTTs if the task
is alive (lazy reclaim requires the initiator to stop sending data, but signal
the target that it is done with using the TTT).

In short, a default lazy reclaim cannot meet “fully backward compatible
with RFC 3720” goal….

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 15

Current draft approach

• Two task management approaches
− “Clarified Semantics”
− “Updated Semantics”

• Clarified Semantics
− RFC 3720 behavior extended to LU Reset & Target Resets.
− Minus all cross-nexus waits (CmdSN & StatSN).

• Updated Semantics
− Same as Clarified Semantics, and…
− Allow FastMultiTaskAbort key negotiation
− Drop the TTT invalidation wait when FastMultiTaskAbort=1

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 16

New Multi-task Abort Timeline
Initiator

*Async Message (LU=X)

TMF complete

Target

TMF Response
(Response Fence)

SCSI TMF (LU=X)

iSCSISCSI iSCSI SCSI

“Fencing action”
Previous slides

CmdSN wait except
for target resets

SCSI TMF

Nop-Out (LU=X)

Stop Data-Out,
Acknowledge Async

Free up TTTs,
buffers if

applicable

Data-Out (LU=X)
Ignored

*Async Message step happens once for each
LUN+session+connection combination if that combination has an
allegiant affected task from the TMF action.

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 17

Questions?

March 20 2006 IETF-67 iSCSI implementer's Guide rev0.1 18

Motion

Seek WG consensus on:
• Response fencing
• FastMultiTaskAbort

	Agenda
	Goals
	Response Ordering
	But….
	Response Fence Model
	Target iSCSI action: Step.1
	Target iSCSI action: Step.2
	Target iSCSI action: Step.3
	Target iSCSI action: Step.4
	Target iSCSI action: Step.5
	Task Management: Problem statement
	Proposal Outline
	Why not simply require lazy behavior always?
	Current draft approach
	New Multi-task Abort Timeline
	Questions?
	Motion

