HMIPv6 Security:
Securing MN-MAP communication

draft-haddad-mipshop-hmipv6-security-02
MIPSHOP working group
IETF65
Why HMIPv6Sec?

- HMIPv6 does not specify any security mechanism between the MN and the MAP
- Need to establish this security association without any prior knowledge to be scalable
- Reuse existing security mechanisms where possible
- Add no additional signaling messages for the MN
- Charter item ;-)
Assumptions

- MN uses Stateless Address Autoconfiguration (RFC2462) to generate the LCoA
- SEND will be deployed
- AR-MAP communication will be secured
Operation (1)

• The MN picks a 64 bit imprint IMP

• The MN generates a 128 bit CBID [HMAC-SHA1-128 (IMP,Kp)]

• The MN sends a SEND RS to the AR with the CBID. The RS also contains the MN's public key Kp. (CIO option)
Operation (1)

1) RtSol(CBID)

AR

MN

MAP
Operation (2)

- The AR generates a secret key (Ks), encrypts it with Kp and sends it to the MN in the RA. (TPSK option)
Operation (2)

MAP

AR

1) RtSol(CBID) 2) RtAdv(Ks)

MN
Operation (3)

• The AR sends a PBU message to the MAP, which carries the MN’s LCoA, Kp, Ks and CBID.

• After receiving the PBU, the MAP creates a BCE to the MN.
Operation (3)

3) PBU (LCoA,Kp,Ks,CBID)

1) RtSol(CBID)
2) RtAdv(Ks)
Operation (4)

- The MN uses the IMP as the IID to auto-configure its RcoA.
- The MN initiates a Diffie-Hellman procedure and computes the public value X.
- The MN sends an LBU message to the MAP with the DH public value contained in a Session Mobility Secret (SMS) option.
Operation (4)

1) RtSol(CBID)
2) RtAdv(Ks)
3) PBU (LCoA,Kp,Ks,CBID)
4) LBU (SMS)
Operation (5)

• The MAP checks the ownership of the RCoA and CBID by recomputing it from the RCoA’s IID and the MN’s public key (Kp).

• The MAP initiates a Diffie-Hellman procedure and computes the public value Y.

• The MAP sends an BA message to the MN with the DH public value Y contained in a Session Mobility Secret (SMS) option and the hash of the secret key Ks in the Third Party Hash Secret (TPHS) option.
Complete Operation

1) RtSol(CBID)
2) RtAdv(Ks)
3) PBU (LCoA,Kp,Ks,CBID)
4) LBU (SMS)
5) BA (SMS, TPHS)
Advantages

- Simple
- Scalable
- No additional signaling messages on the MN-AR link (most likely a scarce resource)
- Resilience against DoS (partial integrity checks before full verification)
- No additional IPR issues
Further Action

• Is the WG interested in solving this problem?
• Does anybody see any technical problems with this solution?
• Adoption as a WG item
THANK YOU