Diffie-Hellman Exchanges for Multimedia Sessions

Mark Baugher
David McGrew
Overview

- draft-baugher-mmusic-sdp-dh-00
- Improves SDP Security Descriptions
 - Adds perfect forward secrecy to keys
 - Describes keys with public information
 - Establish keys without encryption
- Defines SDP use of NIST 800-56
- Should we do this work in MMUSIC?
SDP Security Descriptions

• An SDP media-level attribute
 – Organized into Offers and Answers
• Describes SRTP parameters and keys
 – Relies on signaling-channel authorizations
 – Uses signaling-channel protections
• Carries a media-session key inline
 – NOT a key management protocol
 – Uses a secured channel and its key management
a=crypto Media Attribute

v=0
o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.example.com/seminars/sdp.pdf
e=j.doe@example.com (Jane Doe)
c=IN IP4 161.44.17.12/127
t=2873397496 2873404696
m=video 51372 RTP/SAVP 31
 a=crypto:1 AES_CM_128_HMAC_SHA1_80
 inline:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHAwJSoj|2^20|1:32
m=audio 49170 RTP/SAVP 0
 a=crypto:1 AES_CM_128_HMAC_SHA1_32
 inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj|2^20|1:32
m=application 32416 udp wb
a=orient:portrait
Sdesc Rationale and Issues

• Fixes two problems with SDP k=
 – Describing the attributes of the key
 – Describes attributes of the secure media session
• Easy to parameterize a data security protocol when the signaling is protected
• Problematic when signaling is not well protected or the protection level is not known
• Lacks an important option of perfect forward secrecy for cryptographic keys
The Diffie-Hellman Attribute

- A session-level SDP attribute
- Separate from but usable by media-level security signaling such as sdesc, ISMAcryp
- Adds perfect forward secrecy for media keys
- Replaces secret keying information with public information for DH-capable devices
a=DH Session Attribute

v=0
o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.example.com/seminars/sdp.pdf
e=j.doe@example.com (Jane Doe)
c=IN IP4 161.44.17.12/127
t=2873397496 2873404696
a=DH: STAT_ECDH_GROUP_19
dhkey: 2tC2U5QiHPmwUeH+yleH0Jj5jf8kLnv1F0MN3JYeya=
 UnGgRhzbGlLWHxxFb6PlmrH0Wz0sz19Y0J4Fd7IZC7M=
m=video 51372 RTP/SAVP 31
a=crypto:1 AES_CM_128_HMAC_SHA1_80
 nonce:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHAwJSoj|2^20|1:32
Specification

• Based entirely on NIST 800-56
 Recommendation for Pair-Wise Key Establishment using Discrete Logarithm Cryptography

• Supports static and ephemeral keys

• Supports ECC and FFC
 – IKE Group 2, IKE Group 19, IKE Group 14

• Enables fingerprint authentication or can use SIP Identity authorization
Conclusion

No panacea for SIP key establishment
 – Doesn’t solve the “early media” problem
 – Usefulness to any future solution is TBD
• Applicable to other SDP applications
 – Brings PFS to sdesc keys
 – Useful for pre-encryption applications
• Reduces potential vulnerabilities of sending plaintext keys