An Efficient Loop-Detection
Algorithm for SIP Proxies

draft-campen-sipping-stack-loop-detect-00.txt

Byron Campen
Estacado Systems



The Algorithm in Brief

e All nodes have a uniqgue number(node value)
e Requests will contain a stack of node values.

e \When a request passes through a node (with
value x), pop node values until a node value
less than or equal to x is found. If we find a
node value equal to x, we have found a loop.

e Push x onto the stack, and forward the
request.



An Example

‘. 4 T e =
Sl 1Ty A7
LD: 72... ¥
@ﬂ—__@

When the request traverses the minimal node, the
node value that is pushed persists until the request
comes back. The value is discovered at that time.



Computational and Space
Complexities

e O(n) aggregate complexity, O(1) average for
each proxy. Constant multiplier is slightly less
than that of RFC 3261 loop detection.

e O(log n) average space requirement.
Constant multiplier is btw 17-26 bytes.



Other Desirable Qualities

Malicious UACs and proxies in the “tail”
cannot cause the algorithm to fail in detecting
a loop.

Non-participating proxies will not cause the
algorithm to fail, as long as there is at least
one participating proxy in the loop.

Much better than other algorithms at handling
a long “tail” (something that could be easily
introduced by someone with malicious intent)

Handles short loops very efficiently.



Possible Shortcomings

e Requires a new header, and additional bits

e B2BUASs can corrupt the state needed for
loop-detection (removing/reordering headers)

e Algorithm halts at a random point during the
second loop.

e Vulnerable to broken or malicious proxies
inside the loop.

e False positives are possible (but unlikely)



