DCCP Generalized Connections

Pasi Sarolahti <draft-kohler-dccp-mobility-02.txt> by Eddie Kohler IETF-66 / Montreal, Canada / July 12th 2006

Overview

- Support for address binding and rebinding in DCCP connections
 - Add and remove addresses over connection lifetime
 - Example uses: multihoming, mobility
- Basic idea: Generalized Connections (Gencon)
 - Multiple transport connections (different addresses, ports, seqnos)
 - Shared application sockets
 - Appears as one connection to app
 - Transport "component" connections associated with Gencon through simple cryptographic protocol

Draft status

- draft-kohler-dccp-mobility-02.txt, June 25, 2006
- First implementable draft
 - Removed prior motivation
 - Too mobility specific
 - Specified a crypto suite: RSA-SHA512
 - RSASSA-PKCS1-v1_5 signature scheme, SHA-512 hash function [RFC3447]
 - Used to verify two components are part of the same Gencon
 - Improved error handling
 - Added Prefer message to prefer one component connection for sending data
- Where should we go from here?

Why Handle This at the Transport Layer?

- Multi-homing is relevant use case for multi-access wireless hand-sets
 - Wireless Wide-Area link (e.g., GPRS) is usually available most of the time
 - Wireless LAN access can be short-lived
 - Several access interfaces available at the same time
- Multi-homing on transport layer has nice characteristics
 - Requires support only at the end hosts
 - Supports simultaneous use of IPv4 and IPv6
 - Multiple parallel paths per connection
 - Path selection can be made independently for each flow
 - Transport is made aware of different connection paths
- Often the location of server is fixed and known
- Does not conflict with IP-layer mobility or shim-layer multi-homing

Possible Steps Forward

- Could be Experimental RFC for new DCCP Gencon option
 - To allow experimentations on the idea
- Are there reasons not do this?
 - Does it break something?
- One possible experimentation scenario
 - Voice-over-IP using wireless host with multiple access links
 - Path #1: slow and expensive, stable (WWAN)
 - Path #2: fast and inexpensive, typically unstable (WLAN)
 - Prefer path #1 for signaling (SIP/SCTP)
 - Prefer path #2 for data (RTP/DCCP)
 - Congestion control characteristics on the two paths are completely different
 - Component connections handle separate congestion control for both paths

Questions

- Does it work with NATs?
 - It should if basic DCCP does
- Architectural implications?
 - DCCP's unreliability helps a lot
 - Generalized connections are a simple, clean mechanism
 - Not so different from SCTP add-ip
- Relationship with HIP?
 - This is not IPsec key negotiation protocol
 - Does not require use of IPsec
 - Could be used on top of HIP
- Relationship with shim6?
 - This is not about site multi-homing for IPv6
 - Could be used on top of shim6
- Relationship with Mobile IP?
 - Could be used on top of Mobile IPv4 and Mobile IPv6