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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
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Talk Outline

• Aims and objectives

• Implementation and performance of TFRC

• Implications for real-time video
– Protocol issues

– System design issues

– Experimental results

• Open issues and implications for DCCP



C
o

py
ri

g
ht

 ©
20

06
 U

ni
ve

rs
ity

 o
f G

la
sg

o
w

A
ll 

rig
ht

s 
re

se
rv

ed
.

Aims and Objectives

• Evaluate performance of interactive video conferencing systems 
running over congestion controlled transport
– Implemented video conferencing tool

• PAL/NTSC format video

• Motion-JPEG compression ⇒ responsive, low compression delay

• Typical data rate ~10s Mbps

– User space implementation of TFRC, sending feedback within RTCP, data 
in modified RTP packets

• draft-ietf-avt-tfrc-profile-05.txt

• DCCP implementations not available when work started

• Expect many results applicable to DCCP implementation, although a kernel 
implementation might have better timing characteristics

– Experiments
• Over Internet: Arlington, VA ↔ Glasgow ↔ Helsinki

• Using local test bed (FreeBSD dummynet)
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Implementation

• TFRC implementation can be done at application level, part of 
existing RTP stack

• Four basic functions in feedback loop:

• Challenges:
– Accurate packet spacing at sender

– Timely feedback
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Implementation: TFRC sender

• High performance video requires small inter-packet interval

• Difficult to accurately schedule packets
– Due to inaccurate wakeup after sleep, thread scheduling issues

Example: 3.5ms RTT @ 8Mbps

Errors in inter-packet spacing on same 
order of magnitude as the RTT
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Implementation: TFRC receiver

• Similar issues with slow wakeup
– System slow to schedule thread on expiry of feedback timer

– 10ms wakeup latency not uncommon

– Significantly delays feedback

• Timing inaccuracy in sender and receiver poses a significant
challenge to stable TFRC implementation
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Experimental Performance: TFRC

• Observe poor stability
with short RTT:

• Issues:
– Bursty sending behaviour

• Packets sent in bursts spaced around wakeup intervals

• Degenerates into something similar to a window-based approach

• May be simpler just to use a window based protocol?

– Slow feedback
• With 10ms wakeup latency and 3.5ms RTT, possible for feedback to be 

delayed >2RTT due to inaccuracies

• Will force sender to halve sending rate

• Have found stability difficult to achieve with RTT < 10-20ms
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Network Round Trip Times
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From Glasgow, the RTT to much of 
the UK is within problematic region

• Straight forward to add smoothing to protocol
– Reduces responsiveness and fairness to TCP

– Kernel implementation of TFRC likely more accurate timing ⇒ smoother
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• Capture and encoding process causes timing problems:
– Capture DMA operation can disrupt other bus accesses

– Encoding uses significant amounts of processor time
• M-JPEG currently, other codecs likely much worse

• Linux general purpose scheduler barely adequate to get predictable thread scheduling in 
this environment; real-time scheduler difficult to tune/debug

• Sender dynamics difficult to tune and debug

Implementation: Video Transmission

• Capture and transmission operate on 
different time scales
– Slow bursts of arrivals from codec

– Fast, smoothly paced, transmission

• Mismatched adaptation rates
– TFRC⇒ O(round-trip time)

– Codec ⇒ O(inter-frame time)

– Relies on buffering to align rates, 
varies codec rate
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Experimental Performance: Video

100ms RTT, 800kbps bottleneck, 10 fps M-JPEG
Testing in dummynet

Desired vs. actual sending rate

Best case: RTT and 
frame rate match



C
o

py
ri

g
ht

 ©
20

06
 U

ni
ve

rs
ity

 o
f G

la
sg

o
w

A
ll 

rig
ht

s 
re

se
rv

ed
.

Experimental Performance: Video

• Poor man’s video quality metric:
– Peak Signal to Noise Ratio (PSNR)

– Significant variation in quality over 
session lifetime

• Changes in input source requires a 
variable output rate

• Constrained to be smooth by TFRC 
⇒ quality varies instead

• Also see packet losses due to rate 
limit at sending buffer
– Could be solved by faster codec

adaptation

– But: requires codec that can change 
compression ratio within a frame

• Effect on quality unclear; 
implementation challenge
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Issues: Slow Start

• Slow start requires an application to send at a low initial rate, 
increasing exponentially each round-trip time where no loss is 
reported
– Duration of slow start period depends on network conditions; unpredictable

• Video codec must be capable of such a rapid increase in sending 
rate whilst maintaining reasonable picture quality
– Requires a highly scalable codec, capable of varying compression ratio on 

the order of network RTT
• i.e. while coding a frame, since RTT likely doesn’t match frame rate

• Not clear this is feasible

– Current implementation generates dummy data instead
• Seems wasteful, but can cover call setup delay
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Issues: Steady State

• Application required to send at a roughly constant rate, based on 
average loss rate observed
– Transmission rate narrowly bounded

• Large bursts above the prescribed rate must be avoided due to insufficient 
capacity; less aggressive senders will be “beaten down” by TCP traffic as 
consequence of the TFRC algorithm

• Imposes constraints on when a codec can change its rate

• Given sufficient buffering, and use of dummy data, is possible to meet rate 
constraints; not clear feasible for interactive systems

– Difficult to accurately match transmission rate
• Requires codec that can change rate on O(RTT) timescale

– High frame rate; or codec that can vary compression within a frame

• Requires accurate feedback timing

• Problems with short RTT
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Conclusions

• Initial experiments raise more questions than they answer
– Likely possible to run video over TFRC, with more sophisticated codecs

• Impact on perceptual quality of implied quality variation unclear

• Likely easier as video quality, frame-rate and network bandwidth increase

– Slow start very problematic
• Codecs don’t adapt in an appropriate way

– Given difficulty in matching rate, and resulting bursty behaviour, not clear 
that window based congestion control wouldn’t be more appropriate

• To what extent is sending dummy data appropriate?

• DCCP a good base for experimentation
– Not clear we understand problem sufficiently to give production quality 

advice on implementation of congestion controlled interactive video on 
TFRC


