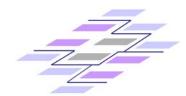
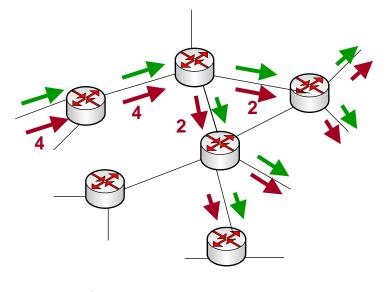


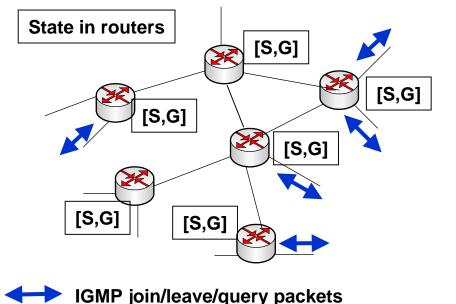
Scalable Adaptive Multicast (SAM) Research Group www.samrg.org

Chairs: John Buford Jeremy Mineweaser


July 13, 2006 - IETF 66

Introducing ... "SAM"


Scalable Adaptive Multicast RG



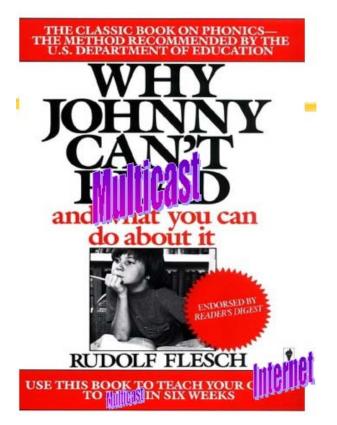
Agenda

- Brief review of IP multicast
- Application layer and overlay multicast approaches
- Hybrid approach
- Goal: SAM Framework
- RG Workplan

Short Review of IP Multicast

IP multicast data packets
 IP unicast data packets

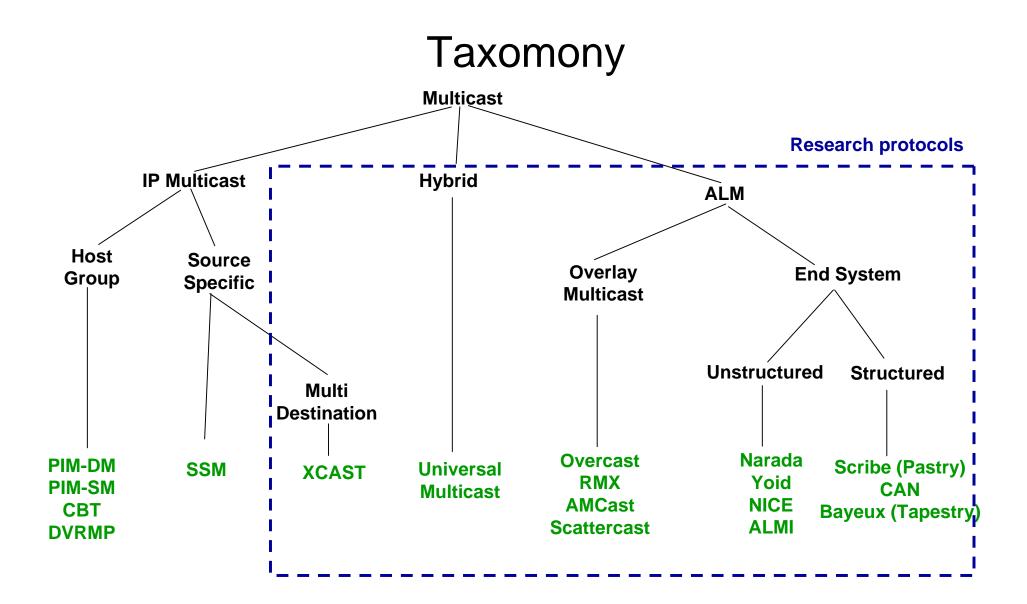
- Sender(s) send to multicast group address
- Receivers join the multicast group by messages to nearest router
- Routers forward data packets
- One-to-many and many-to-many paths


- Some related RFCs
 - RFC 3973 PIM-DM
 - RFC 3376 IGMP v3
 - RFC 2189 CBT
 - RFC 1075 DVRMP
- Active WGs:
 - PIM, SSM, MSEC, RMT

Why do we need IP Multicast?

- Multicast achieves bandwidth savings over unicast
- Bandwidth savings proportional to group size (Chuang-Sirbu scaling law)
 - Group of 10 => 33% BW savings
 - Group of 1000 => 70% BW savings
 - Conferencing applications are particularly efficient
- Important applications (e.g., real-time streaming) are difficult or impossible without it

Many possible applications but slow deployment


- Deployment issues:
 - Business model
 - Global deployment requirement
- Scaling issues
 - Number of available group addresses
 - Router state vs. many small groups

Mostafa Ammar. Why Johnny Can't Multicast Lessons about the Evolution of the Internet. Keynote -NOSDAV 03.

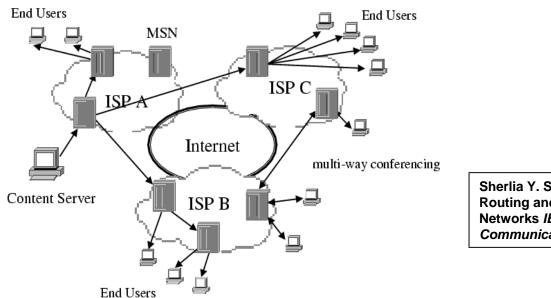
RG Goal: Enabling the Benefits of Multicast

- Offer flexible and incremental deployment options
 - Not all end-points may have network infrastructure support
 - Enable growth of multicast applications
- Address other dimensions
 - Highly dynamic group membership
 - Millions of small groups
 - Concatenated VPNs
 - Mobile networks

Application Layer Multicast

Application Layer Multicast

- Multicast is controlled only by participating endhosts without explicit support of intermediate routers or proxies
- A rendezvous point (RP) is registered in a public directory
- Each node has application software for connecting to multicast sessions
- Various ways to join the multicast tree

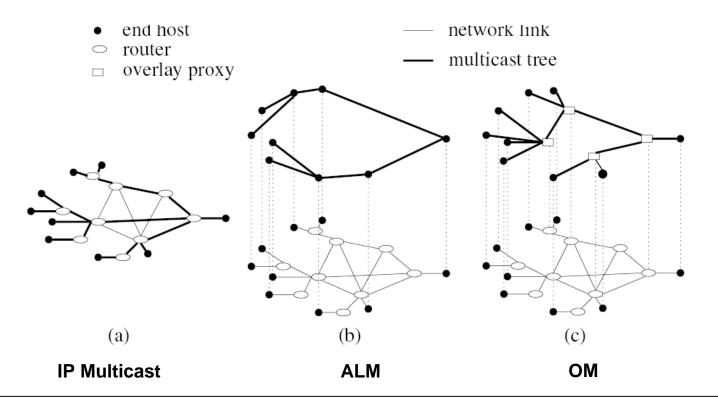

Application Layer Multicast

- Advantages
 - Scalability
 - Routers do not need to maintain per-group state
 - End systems do, but they participate in very few groups
 - Leverage solutions for unicast congestion control and reliability
- Disadvantages
 - Inefficient trees lead to longer latency
 - Dependent on host resources and availability
 - Doesn't leverage native infrastructure support where it exists

Overlay Multicast

Overlay Multicast

- Basic idea
 - Construct a backbone overlay by deploying special intermediate proxies
 - Proxies create multicast trees among themselves
 - End hosts communicate with proxies via unicast or native multicast
- Examples
 - Overcast, RMX, OMNI, Scattercast, Amcast

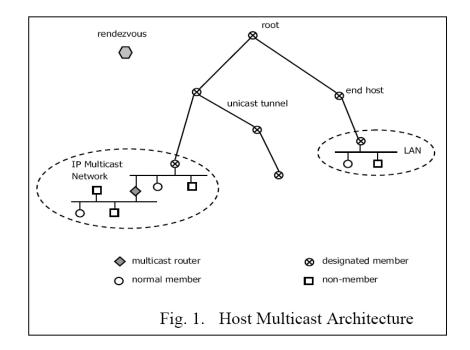

Sherlia Y. Shi and Jonathan S. Turner, Multicast Routing and Bandwidth Dimensioning in Overlay Networks *IEEE Journal on Selected Areas in Communications*, Vol.20, No.8. October 2002.

Overlay Multicast

- Advantages
 - Doesn't require router upgrade
 - Performance can approach native multicast
- Disadvantages
 - Requires infrastructure deployment and provisioning
 - Faces inter-provider interoperability issues

ALM vs OM

- OM has better performance than ALM and simpler deployment than
 native multicast
- But requires wide deployment to provide service through out network



L. Lao, J.-H. Cui, M. Gerla and D. Maggiorini. A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle? in *Proceedings of 8th IEEE Global Internet Symposium (GI'05)* in conjunction with IEEE INFOCOM'05, Miami, Florida, March 2005.

Hybrid

Hybrid Approaches

- Basic idea
 - Combine islands of IP multicast deployment with application level multicast
 - Transition between multiple multicast mechanisms to optimize performance

B. Zhang, S. Jamin, and L. Zhang. Universal IP multicast delivery. In *Proc. of the Int'l Workshop on Networked Group Communication (NGC)*, Oct. 2002

Hybrid Approaches

- Advantages
 - Provides capability despite partial IP multicast availability
 - Enables multicast mechanisms tuned to network characteristics (e.g. link intermittency)
- Disadvantages
 - Complexity and performance loss due to
 - Mapping different join/leave and routing protocols
 - Brokering different group management mechanisms
 - Application sensitivity to performance variations

Goal: A Unified Framework

- Basic idea
 - Enables interoperability of different multicast protocols based on network, traffic, and group properties
 - Dynamically transition between protocols/mechanisms to optimize performance
- Some challenges
 - Understanding multicast support by region is a type of topology awareness
 - Trees that cross regions require mapping between different protocols
 - Tree construction, group membership, loop detection, etc.

What is the RG doing?

- First meeting IETF66
 - 2 IDs
 - Presentations on GIG and survey of ALM/OM systems
- What's our work plan
 - Problem statement and driving scenarios
 - Requirements for SAM Framework
 - Survey of ALM/OM/Hybrid technologies and performance metrics
- Meeting schedule
 - Meeting at Workshop on Peer-to-Peer Multicasting, Jan 2007
 - Part of IEEE Consumer Communications and Networking Conference
 - One other networking conference in 2007, venue under discussion
- Further information
 - Website: www.samrg.org, Mailing lists: sam@irtf.org
 - Biblio on website