Eliminating Duplicate Checks
in ICE:
Alternate Proposal

Philip Matthews
Eric Cooper

Alternate Proposal

Combines best ideas from both Jonathan’s proposal
and Philip/Eric’s proposal.

Has a unified state machine (rather than separate Rx
and Tx state machines).

Takes advantage of “associated transport address”
information signaled in SDP.

Eliminates all duplicate checks.
Is significantly simpler than the two earlier proposals.

Alternate Proposal

Each endpoint maintains two lists:

 List of Transport Address Pairs, each with two
associated state variables:
— IN: pair works in inbound direction
— OUT: pair works in outbound direction

 List of checks to perform, each of the form:
— From native base transport address
(where “base” = “not server-reflexive”)
— To remote transport address
— One check for each possible combination

Alternate Proposal

* When a Binding Request arrives, receiving
endpoint knows that the transport address
pair given in the username works inbound.

 Also, receiving endpoint knows that any
associated transport address pair also works.

— For example, on L, receiving L1:1:R1:1 means that
both L1:1:R1:1 and L1:1:R2:1 work inbound, if
R2:1 is a server-reflexive tid derived from R1:1.

Alternate Proposal

« Similarly, when a Binding Response arrives,
the endpoint knows that, not only does that
specific transport address pair work
outbound, but so does any associated
transport address pairs

— For example, on R, receiving a response for
L1:1:R1:1 means that both L1:1:R1:1 and
L1:1:R2:1 work outbound, if R2:1 is a server-
reflexive tid derived from R1:1.

Example

STUN Server
(no TURN)
L2 R2
o o
NAT NL NAT NR

@U R1£

Both NATs are BEHAVE compliant. For simplicity, we assume
they have the endpoint-independent filtering property.

L is the Offerer, R is the Answerer. This means that R starts its
checks slightly before L.

Example

NAT NL

@U

Candidates are:
L1,q=1
L2,9=.7

STUN Server
(no TURN)
L2 R2
o ®
NAT NR
R1 f
R1,g=1
R1,9=.7

Example

STUN Server
(no TURN)
L2 R2
o o
NAT NL NAT NR

@U R1£

In this example, the m/c line is empty (= a-inactive). Thus the
transport address check ordering is:

L1:1:R1:1 1st

L1:1:R2:1 2nd

L2:1:R1:1 3rd

L2:1:R2:1 4th

Example (Step 0)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL
Check List Pair

In Out

L1:1—=R1:1 L1:1:R1:1
L1:1—=R2:1 L1:1:R2:1
L2:1:R1:1
L2:1:R2:1

OnR
Pair In Out Check List
L1:1:R1:1 L1:1<—R1:1
L1:1:R2:1 L2:1<—R1:1
L2:1:R1:1
L2:1:R2:1

Example (Step 1)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL OnR
Check List Pair In Out | Pair In Out Check List
L1:1—R1:1 L1:1:R1:1 L1:1:R1:1 L1:1<—R1:1
L1:1—R2:1 L1:1:R2:1 L1:1:R2:1 L2:1<—R1:1
L2:1:R1:1 L2:1:R1:1
L2:1:R2:1 L2:1:R2:1
- L1:1<—R1:1 (=L1:1:R1:1)

L1:1—R1:1 (=R1:1:L1:1)>

Step 1: R tries check L1:1<-R1:1, and L tries L1:1—R1:1;

both fail.

Example (Step 2)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL OnR
Check List Pair In Out | Pair In Out Check List
L1:1—R1:1 L1:1:R1:1 L1:1:R1:1 L1:1<—R1:1
L1:1—R2:1 L1:1:R2:1 L1:1:R2:1 L2:1<—R1:1
L2:1:R1:1V L2:1:R1:1
L2:1:R2:1V L2:1:R2:1

L1:1<—R1:1 (=L1:1:R1:1)

L1:1—=R1:1 (FR1:1:L1:])ve X <
L2:1<—R1:1 (=L2:1:R1:1)

<

Step 2: R tries L2:1<—R1:1, which reaches L. Thus L knows
[2:1:R1:1 works inbound. In addition, L2:1:R2:1 also works
inbound, since R2:1 is server-reflexive version of R1:1.

Example (Step 3)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL OnR
Check List Pair In Out | Pair In Out Check List
L1:1—R1:1 L1:1:R1:1 L1:1:R1:1 L1:1<—R1:1
L1:1—R2:1 L1:1:R2:1 L1:1:R2:1 L2:1<—R1:1
L2:1:R1:1V L2:1:R1:1
L2:1:R2:1V L2:1:R2:1

L1:1<—R1:1 (=L1:1:R1:1)

L1:1—=R1:1 (FR1:1:L1:])ve X <
L2:1<—R1:1 (=L2:1:R1:1)

<

>

Step 3: L sends the response back to R. Now R knows that
L2:1:R1:1 and L2:1:R2:1 work outbound.

Example (Step 4)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL OnR
Check List Pair In Out | Pair In Out Check List
L1:1—R1:1 L1:1:R1:1 L1:1:R1:1 L1:1<—R1:1
L1:1—R2:1 L1:1:R2:1 L1:1:R2:1V L2:1<—R1:1
L2:1:R1:1V L2:1:R1:1 V
L2:1:R2:1V L2:1:R2:1V V

L1:1<—R1:1 (=L1:1:R1:1)

L1:1—=R1:1 (FR1:1:L1:])ve X <
L2:1<—R1:1 (=L2:1:R1:1)

<

>
>

L1:1—R2:1 (=R2:1:L1:1)

Step 4: L tries L1:1—R2:1, which reach R. Thus R knows that
both L1:1:R2:1 and L2:1:R2:1 work inbound.

Example (Step 5)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL OnR
Check List Pair In Out | Pair In Out Check List
L1:1—R1:1 L1:1:R1:1 L1:1:R1:1 L1:1<—R1:1
L1:1—R2:1 L1:1:R2:1 V L1:1:R2:1V L2:1<—R1:1
L2:1:R1:1V L2:1:R1:1 V
L2:1:R2:1V V L2:1:R2:1V V

L1:1<—R1:1 (=L1:1:R1:1)

L1:1—=R1:1 (FR1:1:L1:])ve X <
L2:1<—R1:1 (=L2:1:R1:1)

<

>
>

L1:1—R2:1 (=R2:1:L1:1)

<<

Step 5: R replies, and thus L knows that both L1:1:R2:1 and
L2:1:R2:1 work outbound.

Example (Step 6)
Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

OnlL OnR
Check List Pair In Out | Pair In Out Check List
L1:1—R1:1 L1:1:R1:1 L1:1:R1:1 L1:1<—R1:1
L1:1—R2:1 L1:1:R2:1 V L1:1:R2:1V L2:1<—R1:1
L2:1:R1:1V L2:1:R1:1 V
L2:1:R2:1V V L2:1:R2:1V V

L1:1<—R1:1 (=L1:1:R1:1)

L1:1—=R1:1 (FR1:1:L1:])ve X <
L2:1<—R1:1 (=L2:1:R1:1)

<

>
>

L1:1—R2:1 (=R2:1:L1:1)

<

Step 6: At this point, both L and R know that pair L2:1:R2:1
works in both directions, and can be promoted.

