
Certificate Repository Structure

draft-huston-sidr-repos-struct-00.txt

Basic Model

● 'named objects make other named objects'
– Natural parent-child relationship in process

● Follow the hierarchy
– Nodes (ie directories) and Objects (files)
– Information management advantages

● Local sub-trees can be independently managed
● ‘what made me’ & ‘what do I make’ easy to

find/combine into global information base
● Use g(AKI) and g(SKI) for names, CRL, '*IA'

– Algorithmic naming, not real-entity. Tied to public
key of certificate

● (very low) risk of hash collision
● Avoids ‘real world name’ politics

Hierarchy model

● Rooted at each Trust Anchor (TA)
– Trust anchor self signed
– In repository name model, AKI == SKI
– (don’t just trust self-signed or AKI==SKI, TA must be

externally defined to be valid)
● For each certificate issued

– Sub-dir at ‘node level’ (for products of certificate)
named by SKI of certificate. Sub-dir contents:

● produced certs, CRL (for CA certs)
● Signed objects (for EE certs)

– Name structure stable across certificate re-issuance
● if public key remains constant.

Trust Anchors (self-reference)

Trust Anchor

g(AKI): pvpjvwUeQix2e54X8fGbhmdYMo0

g(SKI): pvpjvwUeQix2e54X8fGbhmdYMo0

CRLdp: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0/
 pvpjvwUeQix2e54X8fGbhmdYMo0.crl

serial: 2F

Canonical file name: pvpjvwUeQix2e54X8fGbhmdYMo0-2F.cer

AIA: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0

SIA: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0

 Ipv4 10.0.0.0/8
 192.168.0.0/16

Products of TA

Cert made by TA

g(AKI): pvpjvwUeQix2e54X8fGbhmdYMo0

g(SKI): DLAl5E2IJgSdp2syO9gvEeptpsI

CRLdp: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0/
 DLAl5E2IJgSdp2syO9gvEeptpsI/
 DLAl5E2IJgSdp2syO9gvEeptpsI.crl

serial: 51

Canonical file name: DLAl5E2IJgSdp2syO9gvEeptpsI-51.cer

AIA: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0

SIA: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0/
 DLAl5E2IJgSdp2syO9gvEeptpsI

 Ipv4 10.0.0.0/8
 192.168.0.0/16

Products of (products of TA)

Cert made
by Cert,
made by TA

g(AKI): DLAl5E2IJgSdp2syO9gvEeptpsI

g(SKI): zGJyRYzO3n7rcGV_hH-Hmn68OPY

CRLdp: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0/
 DLAl5E2IJgSdp2syO9gvEeptpsI/
 zGJyRYzO3n7rcGV_hH-Hmn68OPY/
 zGJyRYzO3n7rcGV_hH-Hmn68OPY.crl

serial: 505

Canonical file name: zGJyRYzO3n7rcGV_hH-Hmn68OPY-505.cer

AIA: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0/
 DLAl5E2IJgSdp2syO9gvEeptpsI

SIA: rsync://repository.apnic.net/APNIC/
 pvpjvwUeQix2e54X8fGbhmdYMo0/
 DLAl5E2IJgSdp2syO9gvEeptpsI
 zGJyRYzO3n7rcGV_hH-Hmn68OPY

 Ipv4 10.0.0.0/8

path discovery to TA

Cert,
made by TA

TA

Cert made
by Cert,
made by TA

g(AKI): AAAA
g(SKI): AAAA
crldp: URI-A/AAAA.crl
AIA: URI-A/
SIA: URI-A/

g(AKI): BBBB
g(SKI): CCCC
crldp: URI-A/BBBB/CCCC/CCCC.crl
AIA: URI-A/BBBB/
SIA: URI-A/BBBB/CCCC

g(AKI): AAAA
g(SKI): BBBB
crldp: URI-A/BBBB/BBBB.crl
AIA: URI-A/
SIA: URI-A/BBBB

TA is defined:
 terminate.

Object-Name model

● For a CA
– Your parent’s SKI became your AKI.
– Your SKI becomes your children’s AKI

● Sha1 hash over ASN.1 of public key
– Extremely low collision risk
– g(ski) or g(aki)+<serial> unique for any given CA
– g(ski) alone: all re-issues with same public key hash to

same location (serials not involved)
● No name change with normal certificate renewal

– Public key change == complete namespace rollover
(unavoidable)

● Represented by ‘url friendly’ modified base64
representation, <64 chars per cert instance

Hierarchy Implications

● Inter-RIR registration/transfers explicit in
repository certificate, naming model

● Clean separation of address-types in hierarchy
– Experimental separated from Historical from Current

RIR policy from …
● Clean model for independent sub-trees

– Provide publication point in RSYNC: URL space
– Irrespective of local naming policy, cert identity in

repository is deterministic
– No risk of collision when uploaded into global

repository structure

Modified-Gutmann Alg: g(ski)

● Use of base64 Specified in rfc4387
– Reduces 160-bit sha1 to 27 char Base64 encoding.

● URLs not workable in filestore contexts due to presence of ‘/’
character.

● ‘+’ character interfered with URL parsing
● I-D.josefsson-rfc3548bis

– Base64 transform, ‘/’ and ‘+’ replaced by ‘-’ and ‘_’
● No size increase, URL friendly, filestore friendly

– Can be implemented as a post-process on Base64 transform,
or as a native function

● Resulting object names are at least 26 chars long
– Plus serial (up to 20 chars of HEX) plus syntactic sugar for

filename.ext purposes)
– Under 64-char limits for older FS (but clearly over 8.3)
– Not ‘mandatory' to implement as dir/file store, but useful

Why not certificate names?

● These are not identity certs
– No applicability in browsers, webservers, email signing
– Identity checks for issuance still required but now local to

issuer, no global context
● Unless driven by other needs

– Can use ‘shadow cert’ process to derive certificates with
apparent name for business purposes

● Avoids any consideration of entity name collision
– in certificate namespace, encodings, field choices

– directory name model is inherently complex

● Survivable across future models of address transfer/trading
● “it’s the crypto, not the name which secures”

– Proof of knowledge of private key authorizes signed
outcomes, not the name on the certificate in this model

Operations models

● Authenticated copy
– TA must be sourced out-of-band.

– Fetch repository via rsync
● Crl from CRLdp of TA

● Repository contents via AIA of TA
– Top-down walk to validate all objects published at TA

● Recurse for independent SIA/CRLdp

● Local sub-repository
– Requires at LEAST path back to issuing TA to perform

validation

Why Rsync?

● Avoid inventing new protocol

● Desireable features

– Can fetch single objects, trees

– Byte efficient (only differing blocks)

– No fetch of unchanged objects

● Downsides

– May be expensive on server

– Lax formal specification

What do we get?

● Deterministic, simple naming

● Objects always have a known place in
hierarchy

● EE certs, CRLs, 'products' nest
cleanly inside 'producer' namespace

● Clean separation of certs by
delegation (right back to TA == 'root')

Natural hierarchies form

TA1

prod(TA1)

p(p(TA1))

ee(p(p(TA1)))

roa(c)roa(b)roa(a)

CRL p(p(TA1))

prod(TA1) prod(TA1)

...but you inherit multiple TA

ISP-A

