VoIP Shim for RTP Payload Formats

draft-johansson-avt-rtp-shim
Ingemar Johansson, Ericsson AB
Outline

- MTSI in 3GPP Voice service requirements
- Problems with RTCP
- Why is inband signaling better in this application?
Some buzzwords

- 3GPP (3rd Generation Partnership Project)
 - Standardization body for WCDMA and GSM
 - http://www.3gpp.org

- HSPA (High Speed Packet Access)
 - Aka "Turbo 3G"
 - Constantly evolving
 - HSDPA (High Speed Downlink Packet Access)
 - EUL (Enhanced UpLink)
 - ~10Mbps (various figures)

- GPRS (General Packet Radio Service)
 - "Internet for GSM"
 - Bitrates up to ~40kbps

- EDGE
 - Improvement to GSM-GPRS
 - More complex modulation techniques
 - Bitrates up to ~480kbps

- MTSI (Multimedia Telphony Service for IMS)

- IMS (IP multimedia System)

- AMR (Adaptive Multi-Rate codec)
 - Both narrow band (300-3500Hz) and wideband (50-7000Hz)
 - Payload format standardized in RFC3267
MTSI in 3GPP

- Multimedia telephony service specified in 3GPP
- Involves Video and Voice + other components such as Text.
- IP protocol based.
- Highly optimized radio bearers.
- Header compression for capacity boost.
3GPP VoIP bearers

- Highly optimized radio bearers tailored to fit with packet sizes for AMR.
 - Target is as many (satisfied) users as possible.
 - Minimized lower layer overhead.
 - IP/UDP/RTP header compressed to ~3byte RoHC overhead by means of header compression.

- Use of larger packet sizes comes with a cost:
 - In HSPA systems many retransmission at lower layers possible → more jitter, greater risk of packet loss when user close to cell border (coverage issue).
 - EDGE non persistent mode limits to maximum one retransmission (delay req.) → Very high risk that large packets are lost in bad radio conditions.
 - Preferable that packet sizes becomes smaller when users reach cell border.
HS-DSCH Data transmission

Compressed voice packet of 280 bits

Additional RLC UM OH of 8 bits

Additional MAC OH of typically $0+21 = 21$ bits for voice packets

MAC-d PDU should be optimized for codecs used for MM Telephony to increase capacity. The number of PDU sizes is limited to 8 (by a 3 bit field in the MAC-hs header)
PDU optimization

- The speech codec determines PDU sizes

<table>
<thead>
<tr>
<th>MAC-d PDU size</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>96, 112</td>
<td>To be used for SID frames</td>
</tr>
<tr>
<td>144</td>
<td>Optimized for AMR-NB 4.75+3 bytes ROHC</td>
</tr>
<tr>
<td>160</td>
<td>Optimized for AMR-NB 5.90+3 bytes ROHC</td>
</tr>
<tr>
<td>176</td>
<td>Optimized for AMR-WB 6.60+3 bytes ROHC</td>
</tr>
<tr>
<td>192</td>
<td>Optimized for AMR-NB 7.40+3 bytes ROHC</td>
</tr>
<tr>
<td>208</td>
<td>Optimized for AMR-NB 7.95+3 bytes ROHC</td>
</tr>
<tr>
<td>224</td>
<td>Optimized for AMR-WB 8.85+3 bytes ROHC</td>
</tr>
<tr>
<td>288</td>
<td>Optimized for AMR-NB 12.2+3 bytes ROHC</td>
</tr>
<tr>
<td>296</td>
<td>Optimized for AMR-WB 12.65+3 bytes ROHC</td>
</tr>
<tr>
<td>312</td>
<td>AMR-NB 12.2 + 6 bytes ROHC</td>
</tr>
<tr>
<td>344 (alt. 336)</td>
<td>To be used to convey larger packets (video, ROHC IR-DYN packets etc)</td>
</tr>
</tbody>
</table>

- Video or other real-time media creating large packets will be segmented and use the largest possible PDU size
- The use of large PDU sizes leads to less coverage than when using small PDU sizes
The need for adaptation

- Radio network performance is defined on a large scale basis.
 - Admission control determines if new users (VoIP calls) should be admitted.
 - Metric: percentage of satisfied users.
 - Even though retransmission scheduling algorithms do their best some unlucky users might experience poor quality.

- Fast application adaptation is needed
 - Fast reduction of codec rate enables better coverage for users at cell border.
 - Handover to other networks with different properties demands different application layer behavior.
 - EDGE or 802.11a gives better performance if the packet rate is reduced → frame aggregation preferable
 - HSPA applies dynamic frame aggregation on lower layers by means of retransmission → frame aggregation gives no/little improvement.
Adaptation requests vs metrics

- Metrics is the established feedback entity esp. in IETF
 - Exceptions exists (eg. Full Intra Request in draft-ietf-avt-avpf-ccm)

- Requests
 - Simple entities such as
 - Reduce codec rate.
 - Employ redundancy.
 - Enable frame aggregation
 - Combinations of the above
 - Possible to send requests to other endpoint based of features that are only known in terminal.
 - Handover to different network that requires eg lower packet rate for optimum performance
 - High load
 - Close to cell border.
 - Many features are access specific → difficult to standardize as metrics to transmitted
 - Request does not mean that it is mandated to follow.
 - A request for redundancy may very well be rejected in case the receiver of the request finds it inappropriate.
 - Can be transmitted inband (in the RTP flow) or out of band (RTCP)
Inband vs. Out of band

- **Inband**:
 - Signaling is transmitted in the RTP flow.
 - Example CMR bits in RFC3267 (AMR payload).
 - Inband signaling proposed in draft-johansson-avt-rtp-shim.

- **Out of band**:
 - Signaling is transmitted by means of a protocol (e.g RTCP), separated from the RTP flow.
Why inband?

- Why not stick to RTCP?
 - Inband signaling messes with the RTP architecture
 - RTCP has many benefits, solves many issues quite nicely
 - RTCP useful for performance monitoring
Problems with RTCP

Periodicity

- RTCP must be transmitted on a periodic basis even though the application does not need it.
- AVPF relaxes things a bit (immediate/early mode)
 - Still not possible to send "only when necessary"
- Principle can be questioned
 - No large impact on capacity as RTCP bandwidth is constrained
Problems with RTCP
Packet size

- A minimum required RTCP entities are mandated even though they are not (always) needed.
 - SR or RR with report block(s) + SDES(CNAME) mandated.
 - Minimum size is ~100 bytes (+IP/UDP), can be much larger however depending on CNAME string
 - IP/UDP can be compressed with RoHC but thats all.

- RTCP packet size typically ~3-4 times larger than VoIP RTP packets.
 - Will become segmented in optimized VoIP bearers → increased risk that RTCP packets are lost.

- "Schrödinger’s cat” problem
 - Performance monitoring by means of RTCP in highly VoIP optimized transmission channels can affect the RTP flow considerably making performance monitoring this way questionable.
What are the options

- Inband signaling (as proposed in draft-johansson-avt-rtp-shim)
 - Useful for point to point communication
 - Small overhead
 - Controversial

- RTCP cheats (abuse)
 - Use RR instead of SR
 - NTP only needed for synch eg. between Voice and Video
 - Send RTCP with zero report blocks
 - Report blocks can be sent only once in awhile
 - Skip SDES-CNAME
 - ...or don’t send it in every RTCP
 - Is there any need for this in a point to point application?
 - Must be verified that middle boxes accept this..

- Additional RTCP compression?
 - Unknown if it is possible to achieve good compression