DKIM Originating Signing Policy

Douglas Otis
Doug_Otis@trendmicro.com

What Does DKIM-Base Not Accomplish?

• Accountability for unsolicited bulk email
• Safe white-listing with independent envelopes
• Authorizations outside the signing domain
• Validation of rfc2821 MailFrom addresses or SMTP clients
• Autonomous administration of provider relationships
• Independent vanity email-address domain authorization
• Minimized number of DKIM keys
• Correlation of the signing domain with the SMTP client
What can “Domain Associations” Accomplish?

• Eliminate any reason to:
 – Exchange DKIM private keys
 – Use CNAMEs at key/selector leafs
 – Delegate DNS zones to email providers
 – Deprecate email-addresses beyond signing domain

• Allows safe white-listing
• Assures rfc2821 MailFrom address for DSNs
• Policy & authorizations can extend beyond signing domain
• Relationships with providers are autonomously managed
• Freedom to authorize vanity email-domains independently
What Associated Identities are Assured?

Is the email-address valid or trustworthy?
• rfc2822 From ('F' & 'LF' annotation)
• rfc2822 Resent-* & Sender ('O' & 'LO' annotation)
• rfc2821 MailFrom ('M' protects DSNs)
• rfc2821 Ehlo ('E' protects white-list signing-domains)

Annotation or DSN Protection:
<base32(sha1(signing-domain))>._DKIM-x.email-domain
<base32(sha1(local-part))>._DKIM-Lx.email-domain

White-listing Protections:
<base32(sha1(ehlo-domain))>._DKIM-E.signing-domain
 (Label confirmed by element in answer.)
Rare Association Hash Collision Fix

- Flag wildcard records as “Default” ('D')
- Return confirmation of label validity
- When not confirmed nor default record, query “_default”
- Confirmation wildcards permit use of CNAMEs

Example Association Records:

```
*._DKIM-x
TXT “v=0.0; f=A:D;” (never sends mail)
```

```
s5qs7wwt62yx6yowseuzjntou633vtez._DKIM-x
TXT “v=0.0; a=example.com; f=A;” (always signs)
```
Suggested Policies

DKIM-F & DKIM-LF rfc2822.From
DKIM-0 & DKIM-LO rfc2822.Resent-* or Sender
DKIM-M rfc2821.MailFrom
DKIM-E rfc2821.Ehlo

d= domain-list not assuring valid email-address
a= domain-list assuring valid email-address
l= local-part
f= flags:
 A - All initial messages signed by listed domains
 D - Default record
 L - Local-Part policy is published
 N - Not signing
 O - Only compliant services employed
 T - Trusted Designated Local-Parts
 V - Valid Designated Local-Parts
Why Use an Association Mechanism?

- Email-providers won't require customer's private DKIM keys
- DNS delegation or external CNAME records never needed
- All originating domains can leverage single DKIM signature
- Protects signing-domains used for white-listing
- Assures rfc2821.MailFrom domain for DSNs
- Far safer and more reliable than address-path registration
- Permits annotation of messages signed by other domains
- Permits trust based on UTF-8 (EAI) local-part addresses
- Permits autonomous management with large-scale use
- Minimizes use of DNS resources (replaces separate keys)
- Better retains:
 - Choice of providers
 - Authorization of vanity email-domains with different providers
Strong/Weak Points of DOSP

• Strong:
 – All originating domains can assert separate policies
 – Unlimited scalability with minimal DNS transactions
 – Private Key sharing completely avoided
 – Prevents abuse of signing-domains when used to white-list
 – Autonomous management of domain associations
 – Deterministic DNS lookups and labels
 – Indicates when stringent compliance can be expected
 – Indicates when message can be trusted based upon domain
 – Indicates when email-address is valid within different domains
 – Safe use of TXT Resource Records without added overhead
 – Exceeds SSP-Req-02 except the 6.3 (7) prohibition

• Weak:
 – NXDomain will not end a search for policy
 (fixed by incorporating _DKIM-x within SHA1 hash & new RR)
Questions?