Signature-Only DNSSEC – A Quick Overview

Mike StJohns
stjohns@nominum.com
IETF67
Some Terms

- PNE – Provable Non-Existence DNSSEC;
 AKA – Authenticated Denial of Existence
- Sig Only or SO – Signature Only DNSSEC
PNE vs SO

- Most changes at validator, not at origin
- SO is PNE
 - Plus:
 - Off-tree Signatures
 - Minus
 - NSEC/NSEC3 Records (and supports)
 - Intermediate Validation
- Validation occurs ONLY at End-Client
What Does PNE Give Us?

PNE Can Differentiate

<table>
<thead>
<tr>
<th>PNE</th>
<th>Secure</th>
<th>Bogus</th>
<th>Unsecure</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig Only</td>
<td>Validated</td>
<td></td>
<td>Unvalidated</td>
<td></td>
</tr>
</tbody>
</table>

Output from Validation Algorithms
Chart Notes:

- RFC4033 “Indeterminate” output is indistinguishable from “Bogus” and is included there on previous slide
- “Unknown” refers to data with no superior trust anchor known by resolver
- If data can be validated then PNE doesn’t come into play (except perhaps wildcards) – e.g. PNE doesn’t differentiate Secure from any other state
What Does the Client See?

<table>
<thead>
<tr>
<th></th>
<th>Secure</th>
<th>Bogus</th>
<th>Unsecure</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig Only or</td>
<td>Validated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seen as valid at client

<table>
<thead>
<tr>
<th>Valid</th>
<th>Unseen/Invalid</th>
</tr>
</thead>
</table>

PNE Can Differentiate

\[\downarrow \quad \downarrow \]
What does PNE Cost?

- NSEC and NSEC3 Records
- Monolithic zones – i.e. can’t just add or delete an ownername or RR type under ownername
- Complex rules for what “MUST” be signed
- No off-tree signatures
- 13+ Years – and counting
- More fragile DNS (e.g. one error in signing can cause entire branch of tree to disappear from resolver POV)
- Complex validation algorithm for “Bogus” state
What can PNE do that SO can’t?

- Intermediate Resolver Validation
 - Feature or Mis-feature?
 - Does the “Site Finder” lesson apply?

- May have some wildcard limitations
 - Wildcard vs ownername covered by wildcard

- May be able to short-cut some lookups
 - PNE “knows when to stop”?
What can SO do that PNE can’t?

- Off-Tree signatures
- No intermediate validation requirement (e.g. simpler recursive server)
- Per-Application validation behavior (PNE can do this, but not core approach)
Protocol Differences

- Two New RR Types
 - DSSO – Same as DS except indicates delegation to an SO-only zone
 - OSI G – Off-tree Signature record; signature over single apex DNSKEY by key located somewhere else – e.g. other DNSKEY or public key certificate
Authoritative Server Changes

- DNSSEC special handling for DSSO record (i.e. same handling as DS) and OSI G (same as RRSIG(DNSKEY))

- PNE-capable Authoritative can do SO “leaf” zone (no further delegations) without changes (but may complain about lack of NSEC records)
 - OSI G use signaled by RRSIG(DNSKEY) RR with special Algorithm type
Recursive Server Changes

- Assumption: Server implements PNE
- Add DNSSEC special handling for DSSO and OSIG RR Types
- Client sets CD bit so...
 - Note: possible bug in RFC4035 - 3.2.2 - Shouldn’t “client side of recursive server MUST copy setting of CD bit from the query to recursive queries” be included?
Validation Notes

- Chain of trust can flow through either SO or PNE zones – SO validator just ignores extraneous NSEC info
- No “downgrade” attacks – validator specifies set of minimally acceptable algorithms
Summary

- Simpler zone management
- Mostly backwards compatible with existing server software
- More work for client
 - But client gets most of the benefit!