Delay Variation Applicability Statement

First Draft

November 7, 2006
Al Morton

“Good advice is always certain to be ignored, but that’s no reason not to give it.”
Agatha Christie
“How will the results be used?”

- Krzanowski introduced the Delay Variation Problem at IETF-64
- “How” Question asked at IETF-65, no suggestions yet
- RFC 3393 lists two key uses for the Delay Variation Metric
- Memo Considers these 2 Tasks and 2 Special Circumstances

What about Spatial Composition?

Network Characterization: Inferring Queue Occupation on a Path

Application Performance Estimation: Sizing of De-Jitter Buffers

What if circumstances are challenging?
Outline of the Draft

1. Introduction

2. Purpose and Scope

3. Uses of Delay Variation Metrics
 - 3.1. Determine De-jitter Buff. Size
 - 3.2. Inferring Queue Occupation
 - 3.3. Spatial Composition
 - 3.4. Challenging Circumstances
 - 3.5. <your favorite here>

4. Formulations of IPDV and PDV
 - 4.1. Inter-Packet Delay Variation
 - 4.2. Packet Delay Variation
 - 4.3. Examples and Initial Comparisons

5. Earlier Comparisons
 - 5.1. Demichelis' Comparison
 - 5.2. Ciavattone et al.
 - 5.3. IPPM List Discussion - 2001
 - 5.4. Y.1540 Appendix II

6. Additional Properties and Comparisons
 - 6.1. Jitter in RTCP Reports
 - 6.2. Path Changes
 - 6.2.1. Lossless Path Change
 - 6.2.2. Path Change with Loss
 - 6.3. Measurement Clock Issues
 - 6.4. Reporting a Single Number
 - 6.5. MAPDV2

7. Applicability of the Delay Variation Forms with Tasks
Inter-Packet Delay Var. (selection \(f = \text{previous packet} \))

\[
\text{IPDV}(2) = (R2 - R1) - (T2 - T1)
\]

\[
\text{IPDV}(4) = (R4 - R3) - (T4 - T3)
\]
Packet Delay Variation
(selection $f = \text{minimum delay pkt in stream}$)

\[PDV(3) = (R3-T3) - (R2-T2) \]

\[PDV(4) = (R4-T4) - (R2-T2) \]
Summary of Comparisons

● Challenging Circumstances for measurement:
 ➔ IPDV form offers advantages when
 ✩ Path changes are Frequent
 ✩ Meas. System Clocks exhibit significant Skew
 ➔ PDV form is less sensitive to Packet Loss

● Spatial Composition of DV metric:
 ➔ All known methods use PDV,
 ✩ IPDV sensitivity to sequence is an issue

● Estimate of Queuing Time & Variation:
 ➔ PDV estimates this, especially when sample min = true min

● Determine De-jitter Buffer Size Required
 ➔ PDV “pseudo-range” reveals this property by anchoring the distribution at the minimum delay
Path Change example

![Graph showing Path Change example]
Congested Buffer example
Packet Sequence Change example (2nd & 3rd reversed)
Sources of Delay in Packet Xfer of Real-Time Streams

Source Delays
- Packetization
- Minimum Additional Source Delay

Network Transfer Delays
- Minimum Transfer Delay
- Variable Transfer Delay (queuing)
- De-Jitter Buffer
 - Accommodates Delay Variation from Network and Source terminal

Other Destination Delays
- Max or 99.9%-tile Transfer Delay
- Minimum/Playout Buffer
- DSP & other Processing
Summary

- IPDV and PDV each have their Strengths and Weaknesses
- Suggestions for additional Tasks & Circumstances
- Should this become the draft that addresses the WG Milestone on this topic?
How do you want to use the DV results?

1. **Compare with Requirements/SLA/Maint. Threshold?**
 -- but how are your customers using the Req/SLA/MainThresh?

2. **Real-Time Application Planning: How big should my De-jitter buffer be?**
 -- Note that even Adaptive DJB use a fixed reference between adjustments.

3. <insert your answer here>

4. **ACM’s answer:**
 Doing (1.), to support (2.), with Composed Metrics (earlier talk), in a multi-operator environment
IPDV (selection f = previous packet)

- Dynamic Reference for assessing variation
- Possible to relate to RFC 3550 Jitter (smoothed est.)
- Minimal Dst Clock stability required
- Path Change WITH Loss is effectively IGNORED
- Path Change WITHOUT Loss affects 2 IPDV readings
PDV *(selection \(f = \) minimum delay pkt in stream)*

- Single, Fixed Reference, normalizes delay distrib.
- No clear relationship to RFC 3550 Jitter
- Dst Clock for 1-way delay, but in practice only stability matters over a longer evaluation interval
- Path Change WITH Loss causes Bi-Modal Distrib.
 - Practical fix: Could terminate a sub-interval after loss of \(x \) packets
- Path Change WITHOUT Loss \(\rightarrow \) Bi-Modal Distrib.
 - But that’s what a de-jitter buffer would experience, too…