ROA Contents & Format Proposal

Brian Weis
Overview

• An informal study was conducted considering
 – ROA Contents
 • Based on Steve Kent’s earlier presentations
 – ROA Format
 • Design Considerations
 • Three possible formats studied
ROA Contents

- Data necessary to have a fully specified ROA:
 - **Object type** (i.e., “ROA”)
 - Plan ahead for other object types (e.g., signed AS policy)
 - **Object version** (i.e., “1”)
 - **Address prefix(es)**
 - May be a subset of addresses in the EE set?
 - **AS number(s)** authorized to advertise the address prefixes in the ROA
 - **Validity interval** (i.e., start/stop times)
 - May be shorter than the EE validity period in an emergency?
 - **Signature list**
 - Including certificate pointers and other necessary parameters
ROA Design Considerations

- **Design Considerations**
 - **Size.** Distribution through a network protocol may be advantageous in some cases
 - **Extensibility.** Format should allow standards-track additions to the format.
 - **Open source tool availability.** Tool availability is crucial to adoption.
 - **Clearly defined canonicalization rules.** Needed to support reliable digital signatures
ROA Format

• Three data formats considered
 – Simple TLVs
 • Header + Type-Length-Value attributes representation of the data
 – ASN.1
 – XML
TLV Format

- **Header**
 - Object Type
 - Version
 - Object Length

- **Attributes**

<table>
<thead>
<tr>
<th>Type</th>
<th>Len</th>
<th>Auth AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Len</td>
<td>Validity</td>
</tr>
<tr>
<td>Type</td>
<td>Len</td>
<td>Signature</td>
</tr>
</tbody>
</table>
ASN.1 Format

• Imports many definitions from RFC 3280 and RFC 3779
 – No reason to re-specify common fields
 – ASN.1 open source tools already contain support for these definitions

• New ASN.1 definitions create an ROA framework for imported definitions.
ASN.1 Format (Abridged)

so OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 40 }
so-roa OBJECT IDENTIFIER ::= { so 1 }

SO ::= SEQUENCE {
 sObject SObject,
 signatures SEQUENCE OF Signatures }

SObject ::= SEQUENCE {
 signedObjectType Type,
 version [0] EXPLICIT SOVersion DEFAULT v1,
 validity Validity,
 ipAddrBlocks SEQUENCE OF IPAddressFamily,
 asIdentifiers SEQUENCE OF ASIdentifiers }

Type ::= INTEGER { roa(1) }
SOVersion ::= INTEGER { v1(0) }

Signatures ::= SEQUENCE {
 certificatePointer AuthorityKeyIdentifier,
 authorityInfo AuthorityInfoAccessSyntax,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }
XML Format

• Basic ROA Document Type Definition (.dtd file) is simple

• The digital signature specification is taken from RFC 3275
 – Signature XML elements are added during the signature process
XML ROA

<!ELEMENT SO (sObject)>
<!ELEMENT sObject (signedObjectType, version, validity,
ipAddrBlocks*, asIdentifiers*)>
<!ELEMENT signedObjectType (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT validity (notBefore,notAfter)>
<!ELEMENT notBefore (uctTime)>
<!ELEMENT notAfter (uctTime)>
<!ELEMENT uctTime (#PCDATA)>
<!ELEMENT ipAddrBlocks (IPAddressFamily,addressPrefix)>
<!ELEMENT IPAddressFamily (addressFamily)>
<!ELEMENT addressFamily (#PCDATA)>
<!ELEMENT addressPrefix (#PCDATA)>
<!ELEMENT asIdentifiers (id*)>
<!ELEMENT id (#PCDATA)>
Sample ROA

• Comparison of an ROA in the three formats
 – Type: ROA
 – Version: 1
 – Two prefixes
 – Two authorized ASes
 – One signature (RSA 1024-bit)
Design Considerations

<table>
<thead>
<tr>
<th></th>
<th>TLV</th>
<th>ASN.1</th>
<th>XML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (bytes) of sample ROA</td>
<td>286</td>
<td>445</td>
<td>1654</td>
</tr>
<tr>
<td>Extensible</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Open Source Tools?</td>
<td>No</td>
<td>Yes (asn1c)</td>
<td>Yes (XMLSec)</td>
</tr>
<tr>
<td>Canonicalization?</td>
<td>TBD</td>
<td>Yes (DER)</td>
<td>Yes (RFC 3275)</td>
</tr>
</tbody>
</table>
Conclusion: ASN.1 is the best compromise

• While DER is substantially larger than a simple TLV format (35% larger) it remains manageable.
• ASN.1 is easily extensible.
• Canonicalization rules are well defined.
• Use of ASN.1 has some synergy with Resource Certificates.
• Open source ASN.1 compiler tools appear to hide much of ASN.1 required knowledge from tools developers.
Next steps

• Get consensus on the content & format
• Generate a -00 draft describing the ROA prior to IETF 68