

Connection Latching

draft-ietf-btns-connection-latching-00.txt
Nicolas.Williams@sun.com

What

● Connection latching is to IPsec as TCP is to IP
– Protect packet flows coherently, not just packets

– Kind of like TCP builds byte streams out of packets

● Alternatively: a way to build “IPsec channels”

Why

● IPsec protects packets, not packet flows
– But we want to protect flows

● Policies that aggregate multiple nodes and allow them to
claim addresses from a common network make it
possible for them to steal each other's packet flows (see
descriptions at IETF65/66)

● Policies can change, leaving live packet flows
unprotected, or protected differently than before

● A foundation for IPsec APIs
● IPsec channels please (for channel binding to

IPsec, thanks)

How

● On “connection” creation trigger create latch
– figure out what the peer's ID is, what kind of SA

protected the incoming or outgoing trigger

– record this somewhere

– make sure that all subsequent packets for that
packet flow are protected by similar SA
● drop incoming packets that aren't
● don't send packets if you can't

● On connection end tear down the latch

How

● I-D sketches two implementation designs
● Approach #1: record latch in ULP TCB,

communicate incoming/outgoing packet SA
params between IPsec layer and ULP
– In datagram-oriented apps the latch would be

recorded/enforced by the app

● Approach #2: record the latch in PAD/SPD
– Enforcement at IPsec policy layer

Approach #1: “Intimate interfaces”

● ULPs and IPsec interface with ancillary data
attached to packets as they move up/down the
stack
– U->I “tell me how you'll protect this outgoing packet”

– I->U “this incoming packet was protected like so”

– U->I “protect this packet like so”

– Record latch in ULP TCB, enforce at ULP

● For UDP use “connected” sockets, else put the
app in charge of recording/enforcing latch

Approach #2: PAD-based latching

● Listeners create 3-tuple “template” PAD entry
● Initiators create 5-tuple “template” PAD entry
● Packets that match a template PAD entry

cause an actual PAD entry to be created
– child SA constraints populated from the packet

– peer ID populated from the SA that protected the
incoming packet

● On connection tear-down the “cloned” PAD
entry is removed

Properties

● Approach #1 works for connection-oriented and
non-connection-oriented ULPs
– For UDP apps can “connect” UDP sockets, OR

– apps can record/enforce latch through “pTokens” on
sendmsg()/recvmsg()

● Approach #2 only allows for “connected” UDP
● Approach #2 needs a TIME_WAIT-like state
– Flow and latch tear down have to be atomic w.r.t.

new flow triggers

– Wait time given by local latencies only

Properties

● BUT
– Approach #2 is very close to RFC4301 model and

so can be used with NICs that provide
ESP/AH/SPD offload but which don't also provide
packet tagging interfaces needed for approach #1

APIs

● At it's simplest traditional connect()/accept()
BSD socket-type APIs can perform connection
latching without the app even knowing

APIs

● But IPsec APIs can give apps more power
– Who am I really talking to (IP addresses don't do)

– Specify/verify that a connection's QoP meet/meets
some QoP policy

– LoF

– etc...

● See Michael's and Miika's I-Ds/presentations

BYPASS OR PROTECT

● Oh yeah, optional (“opportunistic”?) protection
● Motivation: if IPsec works, use it and channel binding,

else do what the app always did (crypto at app layer)

– In Approach #1 this is handled by the ULP or app
● But a BYPASS OR PROTECT SPD entry is needed so

that IPsec knows whether the ULP/app can handle this

– In Approach #2 this requires an SPD extension

BYPASS OR PROTECT

● Approach #1 -> ULP/app is responsible, but a
BYPASS OR PROTECT SPD entry still needed

● Approach #2 -> template SPD BYPASS OR
PROTECT entry needed, similar to template
PAD entry

● When a matching packet arrives unprotected clone a
BYPASS entry for just that 5-tuple

● When a matching packet arrives protected clone a
PROTECT entry for just that 5-tuple

● ULP must tear these down when the flows end
● On outgoing flow initiating packets the app must request

protection or bypass, and it must handle IKE timeouts

BYPASS OR PROTECT

● Example: NFSv4 client could try to connect to
server on default port (2049) using IPsec
(BTNS OK)
– If it works, use RPCSEC_GSS with GSS channel

binding to the IPsec channel

– Else (no IKE on server, or IKE timeout) try again
w/o IPsec, then use RPCSEC_GSS as usual with
integ or conf+integ protection
● as it would today

