Linux 2.6.20: Current Status of DCCP

Gerrit Renker - Ian McDonald

with code from

Arnaldo De Melo Andrea Bittau

Outline

1. Status so far:

- → RFC Compliance / Gaps
- → Recent updates

2. Experiences (additional information)

- → Performance tests
- → Scheduling limitations
- → Idle Periods
- → Accumulation of send credits

3. Next Steps & Conclusions

Scope of Work

- Our work so far has focused on matching
 - RFC compliance to specifications
 - TFRC performance to theory
 - behaviour to user expectation

Areas of the code

- Arnaldo's DCCP framework: very mature and high quality – few changes required
- CCID 2 (Andrea) seems to work / not touched
- CCID 3 code & specification needs work

RFC Compliance

- Original merged DCCP code based on revision 00 of DCCP Internet Drafts!
- Combines and integrates latest updates from
 - RFC 3448
 - rfc3448bis
 - RFC 4340/2 + errata
- Numerous bug fixes (total of > 100 patches)

Additions to match RFC

- Service Codes and Partial Checksums
- Larger initial windows (RFC 4342, 5.)
- Idle and application-limited periods (RFC 4342)
 - rfc3448bis provides more detailed information on the 'how' and is used as basis of implementation
- Use RTT estimate from Request exchange
 - as suggested in erratum to RFC 4342
 - again detailed documentation is missing, so rfc3448bis is used as basis of implementation

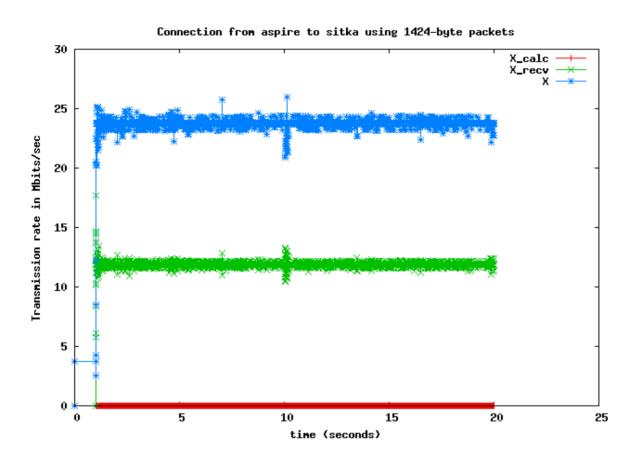
RFC Compliance Gaps

- ECN support (globally)
- CCID3
 - Loss Intervals Option (RFC 4342)
 - History Discounting (RFC 3448 optional)
 - Preventing Oscillations (RFC 3448 optional)
- Need to complete gap analysis with RFC
 - to show what is still missing
 - or wrong.

Next Steps

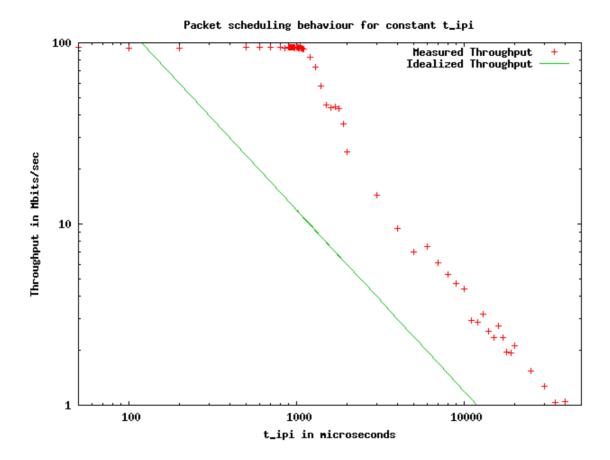
- documentation & extension for socket API
- e.g. changing CCIDs via socket options

•


Availability

- merging of further fixes planned for March
- about 75 patches in the pipeline
- on list/website, but won't be in 2.6.21

Experiences


(Additional Information)

Built-in Kernel Instrumentation

- shown: plot from a kernel run using dccp_probe
- for performance analysis and fine-tuning

Limits of Scheduling Granularity

- shown: throughput = f(fixed t_ipi)
- no control below $t_{ipi} = 1000 \text{ms} = t_{gran}$.

Uncontrollable Speeds in CCID 3

```
ba:0 -#iperf -c sn -l1424 -d -t20

Client connecting to sn, DCCP port 5001

Datagram buffer size: 104 KByte (default)

[ 3] local 139.133.209.75 port 37280 connected with 139.133.209.65 port 5001

[ 3] 0.0-20.0 sec 968 MBytes 406 Mbits/sec
```

- admits of GB speed, but no (congestion) control
- limit of controllable speed given by t_gran
- live with this limitation or use (real-time) fix?

Idle Periods

- RFC3448: if p >0 then
 X = max(min(X_calc, 2*X_recv), s/t_mbi)
- If feedback given once per RTT then
 - after 1 RTT of no transmission X_recv close to 0;
 - therefore X becomes close to 0
- RFC3448 says
 - feedback rate is at least once per RTT or if interval is slower then one packet per RTT, feedback every packet
 - So if application idle occurs, basically start again
- TFRC Faster-Restart will help

Open Issues

- Accumulation of Send Credits
 - Basically t_nom_{n+1} = t_nom_n + t_ipi
 - If idle or not sending slower than allowed
 - then t_nom will be way behind current time
 - which allows unlimited sending for a period
 - Proposals discussed on list ==> rfc3448bis
- Window Counter RTT Sampling (RFC 4342)
 - RTT needed for computing first loss interval / X_recv
 - receive times differ from send times (high variance)
 - time (ACK) compression (Zhang '91 / Mogul '92) ?

Conclusions

- Many bug fixes so far
 - not all committed to mainline yet
 - latest patch sets kept online
 - see mailing list (dccp@vger.kernel.org)
- User / application experience missing
 - but interest is perceivable (growing?)
 - paraslash audio streamer runs on dccp
- In good shape and getting better