DHPv6 Bake-off Report
RIPE-NCC, Amsterdam,
March 14-16 2007

Alain Durand, Comcast
Bake-off Objectives

• Lots of new DHCPv6 code available in the last year or so.

• Initial lab test suggested some interoperability issues.

• Bake-off organized to verify interoperability, operation impact and usability with a larger set of implementations.

• We expected to find a small number of issues where implementers might have read the spec differently.
Who Was There?

• 7 vendors and/or open source providers

• 14 participants (one remote)

• 13 Implementations
 – 5 Clients
 – 5 Servers
 – 3 Relays
Special Thank You

- ISC for organizing the test plan
- RIPE-NCC for organizing the network
- Comcast crew who help run the test
- All the participants that I cannot name who came from 3 continents
Client / Server Test Topology

Objectives:
- Ping local machines
- Ping distant machines

Packet Analyzer

Hub

Client 1 Client 2 Client 3 Client 4 Client 5

Server 1 2001:458:ff01:ff01::/64
Server 2 2001:458:ff01:ff02::/64
Server 3 2001:458:ff01:ff03::/64
Server 4 2001:458:ff01:ff04::/64
Server 5 2001:458:ff01:ff05::/64

HTTP 2001:458:ffff:ffff::80
DNS 2001:458:ffff:ffff::53

RA P=2001:458:ff00:0001::/64
Unicast Relay Test Topology

- Client 1
- Client 2
- Client 3
- Client 4
- Client 5
- Hub
- Packet Analyzer
- Relay 1
- Relay 2
- Relay 3
- Server 1
- Server 2
- Server 3
- Server 4
- Server 5
Anycast Relay Test Topology

Each DHCPv6 server advertises 2001:458:ff03::1/128 to the IGP. The IGP route requests to the ‘nearest’ one. When one server fails, clients fall back to the next one.
The Crew
Bake-off Findings

- Most things *worked*. Totally *independent* implementations could inter-operate well.

- We found *16 operational or implementation choices issues* that requires either clarifications or definition of new options in the spec.

- We will have another bake-off before Vancouver IETF!
Major Issues for Discussion
Issue 1

• Issue
 – Clients do not know how to route the local subnet associated with the addresses assigned by DHCPv6. Some assume prefix length is /64, some it is /128

• Suggested fix
 – Create new DHCPv6 server option to carry prefix length

• Work around
 – Manually add relevant routes on local router and rely on ICMPv6 redirect
Issue 6

• Issue
 – Client sends FQDN option to server to update the DNS.
 • How can the server notifies that the operation is ACKed or NACKed by DNS?
 • What should the server do if the name is already taken?

• Suggested fix
 – None

• Work around
 – Clients polls the DNS until something change…
Issue 4

• Issue
 – Client issues request including IA_ option. What should server do with IA_ADDR?

• Suggested fix
 – Client SHOULD include IA_ADDR from previous transaction
 – If IA_ADDR empty, server SHOULD generate a new address
 – If IA_ADDR not empty and the server is unwilling to lease the address, there are 2 options:
 • Error
 • Provide a different address

• Work around
 – none
Issue 16

• Issue
 – How to validate IA_ADDR field in IA_NA (or IA_TA)?

• Suggested fix
 – Define jointly with 3041bis an IANA registry to list restricted addresses.
 – A server should not lease an address in the reserved range unless configured to do so.
 – Client behavior in this case requires more discussion.

• Work around
 – none
Issue 2

• Issue
 – Server sets T1/T2=0. Client is allowed to renew whenever it wants. At least one client waited for the lease to expire before renewing. Interface went down and up and sometimes got a different address…

• Suggested fix
 – If T1/T2=0 and client don’t know better, they SHOULD use default derived values

• Work around
 – none
Relay Related Issues
Issue 8

• Issue
 – Some servers use the link addr field of the relay agent to restrict the range of addresses to lease

• Suggested fix
 – Link addr field in relay agent is only a hint. Servers MUST be able to assign addresses outside of that scope

• Work around
 – none
Issue 9

• Issue
 – How should a relay choose the link-addr?

• Suggested fix
 – Link-addr must be the global unicast address of the interface from which the packet was received or is set to 0 if no value is available. It MUST not be a link-local address.

• Work around
 – none
Issue 10

• Issue
 – With multiple relays, which link-addr should the server use?

• Suggested fix
 – Servers should use the first non-zero link address in the chain of relays starting with the relay closest to client. If all link addresses in relay chain are zero, server may drop the packet.

• Work around
 – none
Issue 11

• Issue
 – Some relay implementers were confused about link-addr/peer-addr & relay-forward construction

• Suggested fix
 – The relay part of the spec need clarifications.

• Work around
 – none
Issue 13

• Issue
 – At least one relay implementation assumed that it needed to be a router and forward every packet

• Suggested fix
 – A relay agent is not required to be a router and forward all packets.

• Work around
 – none
Issue 14

- **Issue**
 - RFC3315 reserved multicast addresses are not usable for inter-relay multicasting:
 - The link local "all relays and servers" multicast address cannot be used between relays that are not on the same link.
 - The site local "all servers" multicast address cannot be used between relays.

- **Suggested fix**
 - Clarify the spec about this.

- **Work around**
 - none
Issue 15

• Issue
 – Potential of routing loop when using multicast for inter-relay communication when more than two levels of relays are in place.

• Suggested fix
 – Document the risk of multicast loop
 – Recommendation: “Use inter-relay multicast at your own risks”

• Work around
 – none
Issue 12

• Issue
 – What is the maximum number of relays? 4, 32, 256?

• Suggested fix
 – servers should be configurable, and default to the published value in the specification (32). Recommend servers should check the number of relay headers.

• Work around
 – none
Other Issues
Requiring Clarifications
Issue 3

• Issue
 – What should a server do when it receives a new request from the same client before the current lease expires?

• Suggested fix
 – The server SHOULD assign the same address again

• Work around
 – none
Issue 5

• Issue
 – Client sends ORO with FQDN sub-option but does not include a client FQDN option, how should server respond?

• Suggested fix
 – Server SHOULD ignore ORO FQDN request

• Work around
 – none
Issue 7

• Issue
 – Some clients use IA_ADDR with all zero to request a specific lifetime

• Suggested fix
 – “legitimize” this behavior

• Work around
 – none