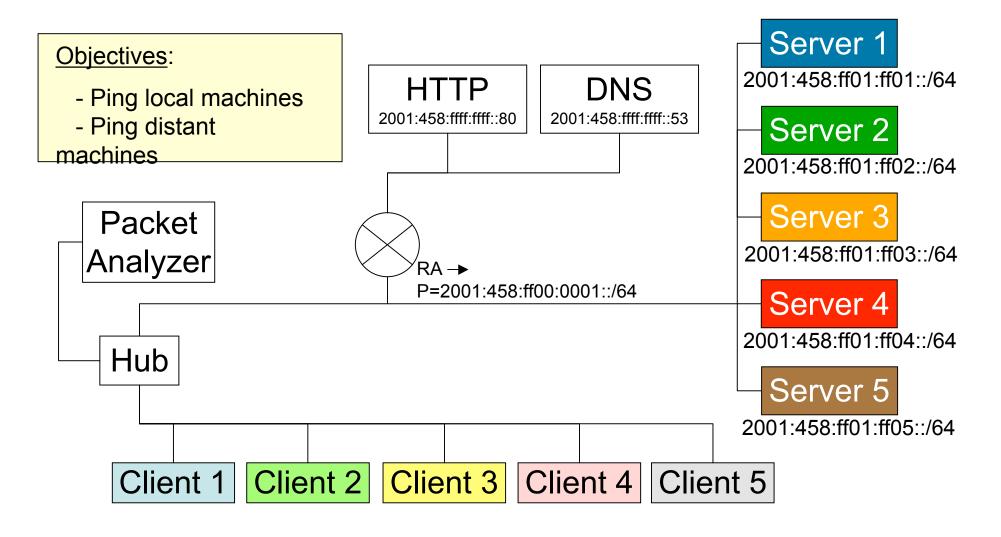
DHPv6 Bake-off Report

RIPE-NCC, Amsterdam, March 14-16 2007

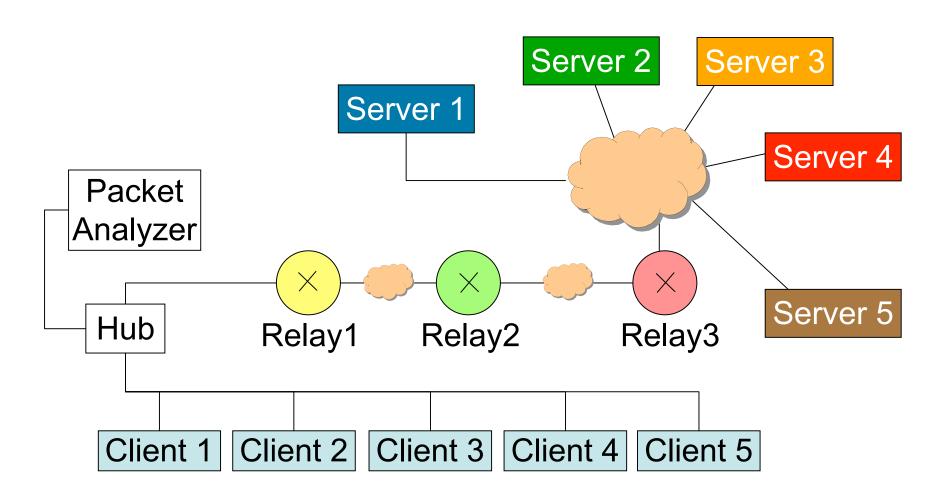
Alain Durand, Comcast

Bake-off Objectives

- Lots of new DHCPv6 code available in the last year or so.
- Initial lab test suggested some interoperability issues.
- Bake-off organized to verify interoperability, operation impact and usability with a larger set of implementations.
- We expected to find a small number of issues where implementers might have read the spec differently.


Who Was There?

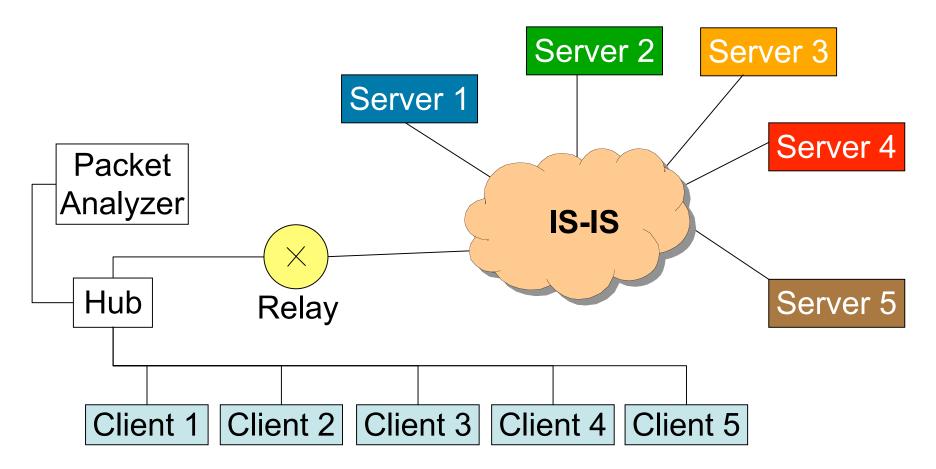
- 7 vendors and/or open source providers
- 14 participants (one remote)
- 13 Implementations
 - 5 Clients
 - -5 Servers
 - 3 Relays


Special Thank You

- ISC for organizing the test plan
- RIPE-NCC for organizing the network
- Comcast crew who help run the test
- All the participants that I cannot name who came from 3 continents

Client / Server Test Topology

Unicast Relay Test Topology



Anycast Relay Test Topology

Each DHCPv6 server advertises 2001:458:ff03::1/128 to the IGP.

The IGP route requests to the 'nearest' one.

When one server fails, clients fall back to the next one.

The Crew

Bake-off Findings

- Most things worked. Totally independent implementations could inter-operate well.
- We found 16 operational or implementation choices issues that requires either clarifications or definition of new options in the spec.
- We will have another bake-off before Vancouver IETF!

Major Issues for Discussion

Issue

 Clients do not know how to route the local subnet associated with the addresses assigned by DHCPv6.
 Some assume prefix length is /64, some it is /128

Suggested fix

Create new DHCPv6 server option to carry prefix length

Work around

 Manually add relevant routes on local router and rely on ICMPv6 redirect

- Issue
 - Client sends FQDN option to server to update the DNS.
 - How can the server notifies that the operation is ACKed or NACKed by DNS?
 - What should the server do if the name is already taken?
- Suggested fix
 - None
- Work around
 - Clients polls the DNS until something change...

- Issue
 - Client issues request including IA_ option. What should server do with IA_ADDR?
- Suggested fix
 - Client SHOULD include IA_ADDR from previous transaction
 - If IA_ADDR empty, server SHOULD generate a new address
 - If IA_ADDR not empty and the server is unwilling to lease the address, there are 2 options:
 - Error
 - Provide a different address
- Work around
 - none

- Issue
 - How to validate IA_ADDR field in IA_NA (or IA_TA)?
- Suggested fix
 - Define jointly with 3041bis an IANA registry to list restricted addresses.
 - A server should not lease an address in the reserved range unless configured to do so.
 - Client behavior in this case requires more discussion.
- Work around
 - none

Issue

 Server sets T1/T2=0. Client is allowed to renew whenever it wants. At least one client waited for the lease to expire before renewing. Interface went down and up and sometimes got a different address...

Suggested fix

- If T1/T2=0 and client don't know better, they SHOULD use default derived values
- Work around
 - none

Relay Related Issues

- Issue
 - Some servers use the link addr field of the relay agent to restrict the range of addresses to lease
- Suggested fix
 - Link addr field in relay agent is only a hint. Servers MUST be able to assign addresses outside of that scope
- Work around
 - none

- Issue
 - How should a relay choose the link-addr?
- Suggested fix
 - Link-addr must be the global unicast address of the interface from which the packet was received or is set to 0 if no value is available. It MUST not be a linklocal address.
- Work around
 - none

- Issue
 - With multiple relays, which link-addr should the server use?
- Suggested fix
 - Servers should use the first non-zero link address in the chain of relays starting with the relay closest to client. If all link addresses in relay chain are zero, server may drop the packet.
- Work around
 - none

- Issue
 - Some relay implementers were confused about link-addr/peer-addr & relay-forward construction
- Suggested fix
 - The relay part of the spec need clarifications.
- Work around
 - none

- Issue
 - At least one relay implementation assumed that it needed to be a router and forward every packet
- Suggested fix
 - A relay agent is not required to be a router and forward all packets.
- Work around
 - none

- Issue
 - RFC3315 reserved multicast addresses are not useable for inter-relay multicasting:
 - The link local "all relays and servers" multicast address cannot be used between relays that are not on the same link.
 - The site local "all servers" multicast address can not be used between relays
- Suggested fix
 - Clarify the spec about this.
- Work around
 - none

- Issue
 - Potential of routing loop when using multicast for inter-relay communication when more than two levels of relays are in place.
- Suggested fix
 - Document the risk of multicast loop
 - Recommendation:
 "Use inter-relay multicast at your own risks"
- Work around
 - none

- Issue
 - What is the maximum number of relays? 4, 32, 256?
- Suggested fix
 - servers should be configurable, and default to the published value in the specification (32). Recommend servers should check the number of relay headers.
- Work around
 - none

Other Issues Requiring Clarifications

- Issue
 - What should a server do when it receives a new request from the same client before the current lease expires?
- Suggested fix
 - The server SHOULD assign the same address again
- Work around
 - none

- Issue
 - Client sends ORO with FQDN sub-option but does not include a client FQDN option, how should server respond?
- Suggested fix
 - Server SHOULD ignore ORO FQDN request
- Work around
 - none

- Issue
 - Some clients use IA_ADDR with all zero to request a specific lifetime
- Suggested fix
 - "legitimize" this behavior
- Work around
 - none