DNS Resolver Priming and DNSSEC

draft-koch-dnsop-resolver-priming-00.txt
Plain Old Priming

- *Hints* file may be outdated, so …
- …ask for the *NS* RRSet for the root to bootstrap/verify
- Really looking after the addresses (*A* and soon *AAAA*)
- Will probably need to advertize EDNS0 (larger UDP packets)
- Recently received attention by RSSAC/SSAC for root server *AAAA*:
 - http://www.icann.org/committees/security/sac016.htm
 - http://www.icann.org/committees/security/sac017.htm
- *Priming has not yet been standardized/documentsed in an RFC*
• Document / Recommend

• Specify Parameters for the priming queries

• Re-Priming practices
 – Honor TTLs? If yes, which?
 – Re-query early?
 – Update hints?

• Special root server requirements?
• Not talking about the Trust Anchors here

• Is setting the DO bit (CD?) needed – delegations aren’t signed either?

• How else would we protect the root NS RRSet?

• More important, though, are the A/AAAA RRSets
Providing the Full Trust Chain

Components needed for root server address validation, RRSIG only

- root NS RRSet
- A and AAAA RRSets (up to 26)
- ROOT-SERVERS.NET KSK and ZSK (maybe can get away with one)
- ROOT-SERVERS.NET DS
- same for NET TLD (although with KSK/ZSK split)
- root KSK and ZSK

(Remember: This is not about signing glue, it’s about delivering RRSIGs in the additional section)
Issues with DNSSEC validation

- NET-related information not (readily) available to root servers
 - Rename root servers (only zones root servers are authoritative for)
 - Use a second trust anchor

- Response size: around 35 RRSIGs plus 5 or 6 DNSKEYs
 - Rename root servers (lesser zones, maybe ARPA or .)
 - Continue to use SBELT until finished
 - Use a second trust anchor
Questions

- Do we need to specify and recommend priming?
- Any known problems with/without vanilla DNS priming?
- Priming with DO bit?
- Root server address validation needed?
Thank You!