Performance of Host Identity Protocol on Nokia Internet Tablet

Andrey Khurri
Helsinki Institute for Information Technology

HIP Research Group

IETF 68 Prague March 23, 2007

Outline

- Nokia 770 specifications
- Porting items
- Test environment
- Basic HIP properties and non-HIP characteristics measured
- Measurement results & Analysis
- Conclusions

Why Nokia 770?

- PDA with very limited resources
- Mobile client (HIP supports mobility)
- Great amount of applications that might utilize the benefits of HIP (i.e. Internet Telephony, Web, Media etc.)
- Linux-based (open source platform, easy porting)

Technical specifications

- Processor
 - a 220-MHz, ARM9-based Texas Instruments (TI) OMAP 1710
- Memory
 - 64 MB DDR RAM
 - user-available 64 MB of internal Flash
 - RS-MMC (Reduced Size MultiMediaCard) slot up to 2 GB currently
- Connectivity
 - WLAN IEEE 802.11b/g
 - Bluetooth 1.2
- Power
 - a 1500-mAh BP-5L Li-Polymer battery
- Operating System
 - Internet Tablet OS 2006 edition (embedded Debian)
 - GNOME-based graphical user interface
 - Linux 2.6.16 kernel

Porting HIPL to Tablet

- Customizing Tablet's kernel to support HIP
 - patching, configuring
- Scratchbox cross-compilation toolkit
 - cross-compiling the kernel and HIPL userspace code
- Packaging software to be deployed on the device
- Flashing kernel image, installing packages

Network Setup

Basic Characteristics

- Duration of HIP Base Exchange
- Round Trip Time
- TCP Throughput
- Duration of Mobility Update
- Power consumption

Times Measured

Duration of HIP handshake stages

(1024-bit keys, puzzle difficulty of ten)

Duration of HIP handshake stages (2)

Results obtained from Tablet-to-Tablet and PC-to-PC scenarios

Puzzle Difficulty Impact

R1 processing time dependence on the puzzle difficulty

Duration of Mobility Update

Average time: Tablet – 287 ms; Laptop – 100 ms

Round Trip Time

RTT		Mean, m	S	Standard deviation, ms			
	IPv6 (64 B)	IPv6 (116 B)	IPv6/HIP ESP, 116B	IPv6 (64 B)	IPv6 (116 B)	IPv6/HIP (ESP)	
PC -> Tablet	2.223	2.358	2.936	0.470	0.425	0.931	
Tablet -> PC	1.901	1.900	2.748	0.332	1.235	1.347	
PC -> Laptop	1.026	1.049	1.177	0.340	0.312	0.243	
Laptop -> PC	1.065	1.070	1.207	0.338	0.427	0.502	

Average Round Trip Time with various size packet

Round Trip Time (cont'd)

Number of measurements

PC as the initiator of the HIP BE

TCP Throughput

Throughput	Mean (Mbit/s)				Standard deviation (Mbit/s)			
Imougnput	ТСР	TCP/HIP	TCP + WPA	TCP/HIP + WPA	ТСР	TCP/HIP	TCP + WPA	TCP/HIP + WPA
Tablet -> PC	4.86	3.27	4.841	3.137	0.28	0.08	0.052	0.030
Laptop -> PC	21.77	21.16	-	-	0.23	0.18	-	-

Average TCP throughput in different scenarios

TCP Throughput (cont'd)

Number of measurements

Power consumption

Applications/Mode	Current (mA)
HIP Base Exchange	360
ESP traffic (<i>iperf</i> with HIP)	380
Plain TCP (iperf without HIP)	380
Video stream from a server	> 500
Local video	270
Audio stream from a server	400 - 500
Local audio	200
Browsing (active WLAN)	350 - 500
Passive WLAN	120
Activating screen	120 - 140
Sleeping mode	< 10

Current consumption by applications

Power consumption (cont'd)

- Constant data transmitting over WLAN utilizes Tablet's CPU fully
 - in this case battery lifetime does not differ much for HIP and non-HIP applications (3.5 4 hours)
 - both control messages and data plane consume similar amount of power at a moment
- If compared to data throughput HIP does consume more energy than plain TCP/IP
 - ESP data encapsulation requires a notably longer CPU utilization to perform a task (send a certain amount of data)
 - The more time is needed the more energy will be consumed in total for an operation by the Nokia Tablet

Conclusions

- Crypto operations cost much
 - Tablet-to-PC handshake consumes 1.4 sec
 - Two tablets need nearly two times more (2.6 sec)
 - Duration of mobility update 287 ms
- Results indicate the time for a single HIP association
 - in reality, there might be several associations at the same time
- Throughput and latency are seriously affected on the Tablet by ESP encryption involved with HIP
 - Tablet CPU constraints the accessible throughput over 802.11g WLAN to 5 Mbit/s (in contrast, 1.6-GHz laptop reaches 20 Mbit/s)
 - HIP reduces this value by 35 % for Tablet and by 3% for Laptop
 - The RTT is increased by HIP by 35-45%

Conclusions (2)

- What do results particularly mean for the end users?
 - How big delays will be in real life scenarios with different applications?
 - HIP influence on particular applications? (i.e. impact on QoS for VoIP, IP-TV etc.)
 - Benefits vs. overhead

• ...

Thank You! Questions?

Packages and documentation available at

http://www.infrahip.net/MERCoNe

HIP Mobility Update

