IPsec Failover and Redundancy
Problem Statement and Goals

draft-vidya-ipsec-failover-ps-01

Presented by: Yaron Sheffer
Contributors

- Lakshminath Dondeti
- Paul Hoffman
- Tero Kivinen
- Gregory Lebovitz
- Marcus Leech
- Cheryl Madson
- Vidya Narayanan (Ed.)
- Michael Richardson
- Sheela Rowles
- Yaron Sheffer
- Marcus Stenberg
- Brian Weis
The Problem

• Fast re-establishment of IPsec SAs

• What forces clients to re-establish IPsec SAs
 – Network failures (affect reachability to IPsec gateways)
 – Gateway failures
 – Failure of application servers using IPsec

• Issues with re-establishment
 – Large number of clients establishing SAs with gateways after failover in a short time span
 • IKEv2 is computationally expensive
 – DH and potential use of public keys
 • When EAP is used for client authentication in IKEv2
 – SA establishment involves several more roundtrips
 – User may be prompted again for credentials
 – Too many hits on the AAA server
Applicability

• Servers using IPsec
 – Other applications such as Mobile IPv6 use IPsec for protection of signaling
 • IPsec may be used in tunnel or transport mode
 – Applications may have interoperable solutions for server failover
 • Incomplete without IPsec failover
 • Either interoperability or seamless failover is not available without IPsec failover
 – Application servers handling large number of clients have to handle large number of IPsec SAs
 • SAs may be a mix of transport and tunnel mode

• IPsec Gateways
 – Always handle tunnel mode traffic
IPsec Failover Solutions Today

• Run IKEv2 again with the new gateway
 – Inevitable today when the gateway address changes
 – Inevitable if client or gateway has reset the session state

• Proprietary solutions exist when gateways have the same address
 – Failover transparent to clients
 – Gateway to gateway SA transfer protocol is proprietary

• What’s wrong with this state of affairs?
 – Problems with running IKEv2 again covered in the previous slide
 – Proprietary solutions have obvious limitations
 • Gateways cannot be distributed globally without complex network planning
 • Gateways cannot all be active for the same IP address
 • Lack of interoperability
Solution Goals (1/2)

• **Distributed Failover**
 – Gateways may be located at different sites and may not share the same IP address or have the same view of the network

• **Client Involvement**
 – Given that the gateways may be distributed, the failover cannot be transparent to the client

• **Low Latency failover**
 – IPsec gateway having to handle a flood of IKEv2 exchanges upon a failover
 – Low latency requirements of applications that use IPsec, e.g., Mobile IPv6

• **Application Usage of IPsec**
 – Need to take requirements of applications of IPsec in designing the failover solution
Solution Goals (2/2)

• Interoperability
 – Client-gateway and gateway-gateway interoperability is required

• Stateless Failover
 – Infrastructure remains stateless; state is stored in the client

• Stateful Failover
 – Must be possible to store IKEv2/IPsec state in the infrastructure

• Support for IPsec transport and tunnel modes
Thank You!