Emerging Routing Issues

John Scudder, David Ward
2007.03
Why is the routing community here?
Tune in, turn on, no time out …

- The last 6-9 months has seen a renewed desire to visit routing and addressing architectural issues
- In fact, the routing community has been discussing this for >15 years
- This talk attempts to lay out an overview of some issues discussed by the community in various forums, consortia, working groups and design efforts
- It represents a view that we need to clearly define the problem and boundaries of the solution

 Will dictate if we enable new tools and network architectures or if we solve a smaller set and remain with the building blocks we have today
 No value judgment is given either way, just fud for discussion…
Fundamental Requirements from Routing Community

- We want the rib/fib growth to flatten or be negative
- We want the dynamics of the routing system to slow down

Let me discuss a few more goals …
Baseline Preferences (nod to Dave O. and Dino F.)

- Routing folks prefer a mechanism to:
 - Associate an ID with a set of Locator addresses
 - Forward packets using Locator addresses
 - IDs may not have to be routable
 - Maintain the reachability status of Locator addresses
 - Hosts can change, networking nodes can change

- Routing folks prefer:
 - Incremental deployability
 - Little modification of Internet infrastructure
 - Reduction of transit router state load
 - No new, specialized ID/Locator binding service
 - Much thought must be applied here
 - Provides benefits to both Sites and Providers
 - Who pays and who benefits?
Site-Based Goals

- Sites need to be multihomed
 Connected to more than one provider
- Sites need flexibility to change providers
 With easy or no renumbering
 While maintaining session survivability?
- Site-supported devices need to be mobile & roam
 While maintaining session survivability?
- Sites must be able to advertise TE/service desires
 Enable multi-provider load balancing
Provider-Based Goals

- Providers need their routers to scale in multiple dimensions with competing requirements
 \[\text{Power} \parallel \text{cost} = f(\text{pps}, \text{features}) \]

- Providers need to maximize their resources to deliver cost effective connectivity
 Including Traffic Engineering

- Provider-supported devices need to be mobile & roam
 While achieving scalability

- Providers need to be able to prevent a bad-actor from hijacking their network paths and mapping function
If we are re-architecting internet routing and addressing …

Do we want to enable a new toolset to build different network functionality?

Should the following issues be included in or outside the bounds of the solution?

Additional issues of concern voiced in greater routing community:

Solutions to **Network partitioning**

Mobile Ad hoc NETworking

Secure routing (paths) and forwarding between networks and sites

Real-Time registration and resource mapping that can be used for path selection

Service locators in topology

Inability to have a single end-point represented in **multiple service domains**
A tale of two databases

1. Routing Database (RIB becomes FIB)
 - No separation of provider from “customer” (aka site)
 • Provider-based addressing
 • Current site multi-homing, migration, TE and service solutions cause additional state into the routing system
 - Local operational state propagated globally

2. Mapping Database (Name to address)
 - Database (DNS) of customer name->provider address
 - Today no association in mapping database of identifier to locator

- The two primary databases (Routing and Mapping) running the internet are still in evolutionary progression from initial birth
 Issues of past ~20 years not addressed
Two databases directly related

- Architectural consideration but lack of design and development of relationship between addressing, mapping, security and routing

- How routing and mapping work together is critical to defining the problem and finding an appropriate solution
 - Both databases assume static endpoint, simple resource statements, minimal security

- Mapping requirements and Destination types result in need for at least three successive bindings:
 - name to identifier
 - identifier to locator
 - locator route/path
Operational issues (nod to Scott Shenker, Jen Rexford, Nick Feamster)

- Providers (Tier-1) have accumulated a large number of noncontiguous prefixes (site multihoming, TE, non-topological assignment policies, consolidation)
 - Effectively random numbers
 - Policy sets (based on AS) must be matched against random numbers
 - Routing policy doesn’t guarantee desired results
 - Not easy to prevent erroneous announcements

- Set of transit routes == full enumeration and state maintenance of all sites and perhaps end-points

- If must announce my more specific route for TE/LB reasons, may not need operational state reflected into global internet
Summarizing the overview

- Discussion of BGP and some minor improvements later today in RTG-area
 - Clarifying what toolset we have today and may be able to be done to help
- Re-chartered RRG to research routing design issues
- Need scalable router solution
 - What is the role and desired functionality of routers?
- Critical both co-dependence of routing and mapping are considered thoroughly
- Timeframe?
 - Routing community exploring short, medium and long term changes
 - No clarity in routing community of exact requirements, design or solution
End