Considerations about Multicast BGP/MPLS VPNs Standardization

Thomas Morin – France Telecom
Ben Niven-Jenkins, Raymond Zang – British Telecom
Yuji Kamite – NTT Communications
Nicolai Leymann – Deutsche Telekom
Considerations about Multicast BGP/MPLS VPN Standardization

■ Context
 - *draft-ietf-l3vpn-2547bis-mcast*
 - not (yet) a specification for a standard:
 - multiple options proposed for many of the building blocks
 - this does not provide interoperability

■ Defining a core set of mandatory procedures is needed
 - leverage defined requirements
 - *draft-ietf-l3vpn-ppvnp-mcast-reqts*

■ For each building block...
 - examine the different options
 - try to find which one best fits the requirements

■ Authors of this draft make suggestions on the good candidates for being part of a set of mandatory procedures
Two proposed mechanisms for auto-discovery:
(1) BGP Auto-discovery
(2) Discovery with PIM Hellos over shared tree

Notes
• (1) is consistent with unicast VPN operation
• (2) is limited to shared trees (ASM multicast or MP2MP LDP) while (1) does not have such a limitation
• (1) provides more control
 ➔ can be used to detect misconfiguration of shared trees ids/addresses
 ➔ can provide peer authentication (TCP MD5)

Suggestions:
• make BGP auto-discovery mandatory (1)
• if needed, optionally provide (2) for compatibility purpose
Proposed mechanisms for S-PMSI signalling:
(1) UDP-based protocol and associated procedure
(2) Procedure based on BGP extensions

Notes
- (2) can be used in an inter-AS option B context, in consistency with this model (no exchanges between PEs of different AS)
- (2) can efficiently provide peer authentication
- (1) is only for mVPNs having MI-PMSIs (more state)
- (1) definitely is Yet Another Protocol™
 - “[...] as far as possible, the design of a solution SHOULD carefully consider the number of protocols within the core network: if any additional protocols are introduced compared with the unicast VPN service, the balance between their advantage and operational burden SHOULD be examined thoroughly.” (5.210 of draft-ietf-l3vpn-ppvnp-mcast-reqts)

Suggestions:
- make BGP-based S-PMSI signalling mandatory (2)
- implementations can provide (1) for compatibility purpose, but security implications of (1) should be closely studied, especially in an inter-AS context
Two ways to switch traffic from an I-PMSI to an S-PMSI:
(1) the source-side PE signals the S-PMSI, then sends on both trees for a while, each receiver-side PE chooses when to start accepting traffic on the new tree
(2) the source-side PE signals the S-PMSI, wait for some time, then stops sending on old tree and starts sending on new tree

Notes
• (1) results in twice the bandwidth being used for some period of time
• (1) is likely to introduce packet loss or duplicates
• (2) minimizes this risk
• requirements state that "[…] a multicast VPN solution SHOULD as much as possible ensure that client multicast traffic packets are neither lost nor duplicated, even when changes occur in the way a client multicast data stream is carried over the provider network" (section 5.1.3 of requirement)
 ➔ provider's don't want that optimizing their backbone result in service degradation

Suggestion:
• make (2) the mandatory procedure
■ Proposed mechanisms are:
 (1) Full per-MVPN PIM peering across an MI-PMSI
 (2) Lightweight PIM peering across an MI-PMSI
 (3) Unicasting of PIM C-Join/Prune messages
 (4) Use of BGP for carrying C-Multicast routing

■ Notes:
 • Scalability comments
 ➔ contrary to “popular belief”, (1) and (2) require all PEs of an mVPN to process all messages
 - this processing requires parsing a PIM message, looking up the VRF MFIB, and possibly updating a timer
 ➔ (3) put the burden of explicit tracking of receiver-side PE state, on the upstream PE
 ➔ with (4) the equivalent of explicit-tracking is made by the RR (or spread in a hierarchy of them)
 ➔ (4) advertise routes to all PEs, but:
 - these are easily discarded based on route-target (no VRF MRIB lookup)
 - if better is needed : use RT-Constraint to completely avoid this
 ➔ (4) seems to provide all needed mechanisms to diminish/spread the load when scalability becomes a practical issue (e.g. see numbers in survey);
 many mechanisms are just inherited from BGP experience
... notes (cont'd):

- (1) and (2) require an MI-PMSI (more state in the core)
- (4) enables an inter-AS mVPN deployment consistent with unicast VPN “Option B” (no exchanges between PEs in different ASs)
 - and can provide peer authentication
 - ”it is RECOMMENDED that a multicast VPN solution support means to ensure the integrity and authenticity of multicast-related exchanges across inter-AS or inter-provider borders”
- (4) provides a good architectural and operational consistency
 - Extranet support is an example / Inter-AS is another
 - Consistency helps operational efficiency
- Few return on experience on performance/impact of (4) as of today
- No details on what (2) and (3) would precisely mean

Suggestions

- authors note that there are many strong points in favor of (4)
- suggestion to keep (2) and (3) out of the spec at least until they are better defined/understood
- implement both (4) and (1) / defer what to mandate?
mVPN P-multicast trees encapsulation

- **Multiple proposed encapsulation techniques**
 - GRE/IP multicast w. PIM-SM ASM or SSM, or bidir-PIM
 - P2MP MPLS w. LDP
 - P2MP MPLS w. RSPV-TE
 - ...

- **Notes**
 - Different contexts, different needs
 - A new technique can be added or removed without any interoperability issue => not standardization issue at stake

- **Suggestions**
 - mVPN specifications should not unreasonably restrict the data plane technology that can be used
 - But no need to mandate an encapsulation technique
 - It is recommended that implementations support the multicast tree encapsulations techniques corresponding to widely used unicast VPN encapsulation techniques, namely: *mLDP, P2MP RSVP-TE and GRE/IP-multicast*
Two approaches are proposed:
- Non-segmented inter-AS P-multicast trees
- Segmented inter-AS P-multicast trees

Notes:
- A requirement:
 - “a multicast VPN solution SHOULD provide inter-AS mechanisms requiring the least possible coordination between providers, and keep the need for detailed knowledge of providers’ networks to a minimum”
 - the segmented approach is helpful in this area
- Choice of encapsulation technique
 - no coupling between different ASes
- S-PMSI in Inter-AS
 - The segmented approach allows to keep the independence of the traffic-engineering decision made in different ASes
- Different context, different needs
 - in an inter-AS / mono provider context, the non-segmented approach can be good enough

Suggestion
- Specifications should recommend implementing both
About deployments of early implementations

- There are deployments of early implementations
 - draft-rosen-vpn-mcast
 - draft-raggarwa-l3vpn-2547-mvpn

- Some of the suggestions are in line with these early implementations, and some differ.

- Authors' opinion
 - Run implementations of current specifications in parallel with early implementations (when an incremental modification is not possible)
 - Provide per VPN switching knob
 - would happen during maintenance windows
 - A more complex update scheme?
 - maybe not worth the complexity...
Main points
- Security, especially in inter-AS
- Consistency
 - with unicast VPN
 - of the overall mVPN architecture
- Scalability
 - good to avoid the use MI-PMSI when not needed for the dataplane
 - what is the right tool to handle customer multicast routing load?
- Take deployments of early implementations into account

Please react / discuss / comment
- Ask WG and specification authors to take these comments into consideration
- We plan to update/refine these suggestions
- Contributions welcome!

Thanks!