
ssmping
<draft-venaas-mboned-ssmping-00.txt>

Stig Venaas
venaas@uninett.no



ssmping

A tool for testing multicast connectivity and more
Behaviour is a bit like normal icmp ping
Implemented at application layer using UDP

No additional requirements on the operating system
The operating system and network must support SSM

A server must run ssmpingd
A client pings server by sending unicast ssmping query
The server replies with both unicast and multicast 
ssmping replies
In this way a client can check that it receives SSM from 
the server

You can run your own server, also several public IPv4 and IPv6 
servers on the Internet
And also parameters like delay, number of router hops etc.



How it works
Client Server

User runs
ssmping <S>

Client joins S,G

Clients sends
unicast to S

Server receives unicast
ssmping query

Responds with ssmping
unicast reply and
multicast reply to G

Client receives
replies and
prints RTT and
hops from
server

Client sends a
new query every
second

t t



Example output

$ ssmping -c 5 -4 flo.nrc.ca
ssmping joined (S,G) = (132.246.2.20,232.43.211.234)
pinging S from 158.38.63.20
unicast from 132.246.2.20, seq=1 dist=13 time=122.098 ms
unicast from 132.246.2.20, seq=2 dist=13 time=122.314 ms

multicast from 132.246.2.20, seq=2 dist=13 time=125.061 ms
unicast from 132.246.2.20, seq=3 dist=13 time=122.327 ms

multicast from 132.246.2.20, seq=3 dist=13 time=122.345 ms
unicast from 132.246.2.20, seq=4 dist=13 time=122.334 ms

multicast from 132.246.2.20, seq=4 dist=13 time=122.371 ms
unicast from 132.246.2.20, seq=5 dist=13 time=122.360 ms

multicast from 132.246.2.20, seq=5 dist=13 time=122.384 ms

--- 132.246.2.20 ssmping statistics ---
5 packets transmitted, time 5003 ms
unicast:

5 packets received, 0% packet loss
rtt min/avg/max/std-dev = 122.098/122.286/122.360/0.394 ms

multicast:
4 packets received, 0% packet loss since first mc packet (seq 2) 
recvd
rtt min/avg/max/std-dev = 122.345/123.040/125.061/1.192 ms



What does the output tell us?

13 unicast hops from source, also 13 for 
multicast
Multicast RTTs are slightly larger and vary more

The difference in unicast and multicast RTT shows 
one way difference for unicast and multicast replies, 
since they are replies to the same request packet

The multicast tree is not ready for first multicast 
reply, ok for 2nd

No unicast loss, no multicast loss after tree 
established



Is it useful?

Complements multicast beacons
Useful for “end users” or others that want to perform a 
“one-shot” test rather than continuously running a 
beacon
Beacons don’t show how long it takes to establish the 
multicast tree, they only show the “steady state”

We’ve seen cases where it takes much longer than expected
Neither do they compare unicast and multicast
Are there other data than RTT and hops that should 
be measured?

Hops are measured by always using a ttl/hop count of 64 
when sending replies



Also asmping. Example output:

sv@xiang /tmp $ asmping 224.3.4.234 ssmping.uninett.no
ssmping joined (S,G) = (158.38.63.22,224.3.4.234)
pinging S from 152.78.64.13
unicast from 158.38.63.22, seq=1 dist=23 time=57.261 ms
unicast from 158.38.63.22, seq=2 dist=23 time=56.032 ms

multicast from 158.38.63.22, seq=2 dist=7 time=207.876 ms
multicast from 158.38.63.22, seq=2 dist=7 time=208.567 ms (DUP!)
unicast from 158.38.63.22, seq=3 dist=23 time=56.852 ms

multicast from 158.38.63.22, seq=3 dist=21 time=70.352 ms
multicast from 158.38.63.22, seq=4 dist=21 time=57.208 ms
unicast from 158.38.63.22, seq=4 dist=23 time=57.910 ms
unicast from 158.38.63.22, seq=5 dist=23 time=56.206 ms

multicast from 158.38.63.22, seq=5 dist=21 time=57.375 ms



Protocol overview

All messages have following format
Message type, one octet (Q or A)
Options in TLV format
Client sends Q message with some options
Server sends two identical replies, one unicast
and one multicast
Changes Q into A, echoes back all options, may 
add some

Server should only add options when requested?
Responses have ttl/hop count of 64



Client options

Client identifier
IP address, PID, hashed?, some random number?
Used by client to know it is not a reply for someone else

Sequence number
1 for first request, increased by 1 for each request

Timestamp in microseconds (also for servers)
Multicast group

Only for ASM (or?), see later slide
Option request option

Client might ask server to include certain options
Reply size

Client asks server to send response of a given size
Can it be used for DoS attacks? Should client instead pad its 
queries? May be hard to know response size if server is asked to
add options



Server options

Server may append options (only by request?)
Timestamp in microseconds (also for clients)
Version

Free text vendor/implementation version etc (UTF-8?)

Pad
If client asks for given reply size



Server behaviour

What should server do if it is overloaded?
It’s been suggested that server can multicast generic/common 
replies to clients. Is that useful?
Should it simply not respond?
Should it respond with some “leave me alone” message

Might also be useful if server restricts which clients to serve



asmping

Even more useful to have tool for ASM (IMO)
Registers/MSDP, multiple forwarding paths…

Want to allow client to pick multicast group (or prefix)
For IPv6 we should use fixed group id and allow /96 prefix to 
be specified
Useful to choose group to choose different RPs or scopes

Can client pick address that is used by some multicast 
session in order to attack it?
How to reduce the security issue?

Server rate limit?
Fixed destination port?



Next steps

Want to reserve port number and/or SRV name
Open question whether client should use a fixed port and 
whether it can be the same as the server port

Reserve IPv4 SSM address?
The source might be running other multicast applications

Reserve IPv6 Group IDs
Used for both SSM and ASM

Don’t think reserving anything for IPv4 ASM is doable
Need input to improve protocol


