Multiple Care-of Address Registration + IEEE802.21 with NEMO Basic Support

Keio University/WIDE Project Kyocera Corporation

Introduction

- Background
 - Multiple Care-of Address Registration (MCoA)
 - It is proposed to support multihomed mobile nodes in Monami6
 WG
 - WIDE had several experiments/demonstrations using MCoA
 - 802.21
 - L2 information is used for efficient handovers but it is often maintained for each network access devices in different manner
 - We thus have interesting to use IEEE802.21
- Purpose
 - Study how we can use IEEE802.21 on MCoA enabled MIP/NEMO

Confirmed how it works!

Experiment Testbsd

iBurst

- A metropolitan-wide wireless broadband system developed by Kyocera and ArrayComm
- TDMA/TDD based wireless broadband system
 - adaptive-array antenna, SDMA, Link Adaptation
- 1Mbps downlink per user
 - maintains stable high-speed communications even while multiple users are concurrently connected
- Excellent range (approx. 12 km radius)
- Reliable mobile handover between coverage areas
- all IP-based network

http://global.kyocera.com/prdct/telecom/office/iburst/technology.html

Test Scenarios

- Case 1 : NEMO + MCoA + two types of link triggers
 - MCoA with 802.21 L2 triggers
 - We define two thresholds to notify the status changes:
 - L2-Prepare (GOOD to FAIR) for MCoA path establishment
 - L2-GoingDown (FAIR to BAD) for switching active interfaces
- Case 2: NEMO + two indications
 - Use the two thresholds by 802.21 trigger as well
 - Without MCoA
- Case 3: NEMO + one indication
 - Use only the switching threshold
- Case 4 : NEMO only
 - No interaction with L2

Changes of L2 RSSI (Case 1)

- 1 the RSSI of iBurst goes blow than Threshold 1 (-93dBm).
- 2 the NEMO path via EVDO is established
- ③ the RSSI of iBurst goes blow than Threshold 2 (-98dBm).

X KYOCERa

The VoIP trace on MNN (Case 1)

Comparison with other Scenarios

case	packet loss	delay(ms)
(1) NEMO + MCoA + 2 trigger	0	0
(2) NEMO + 2 trigger	33	350
(3) NEMO + GoingDown trigger	847	16900
(4) NEMO + no L2 interaction	7338	142000

(1) See the previous two slides. **0 packet loss!**

Keio University

- (2) The case without MCoA support. The delay is caused by RTT of BU/BA.
- (3) The case only with LinkDown event. **The delay is about RTT of BU/BA+ Link Preparation.**
- (4) The simple NEMO case: Neither L2 indication nor MCoA.

 The MR didn't aware of the link down before the PPP session timeout.

Consideration

- System must be flexible to support several handover scenarios
 - Setting L2 association (e.g. PPP, 1x) required certain period. Thus LinkGoingDown is not always useful.
 - Some trigger to kick the L2 association/preparation before LinkGoingDown is necessary.
- A common API to send/receive IEEE802.21 message inside a node would help
- An algorithm against misleading indications is needed

Summary

 Keio/WIDE and Kyocera have designed and implemented a MR which is capable of

- The MR performs the make-before-break handover with MCoA and triggers the handover by 802.21
- We confirmed the MR works well with iBurst and CDMA2000 1x EvDo Rev.0
 - VoIP clients are communicating via the MR without any packet loss during the handover

Any Question?

Contacts:

Koshiro Mitsuya <mitsuya at sfc.wide.ad.jp>
Ryuji Wakikawa <ryuji at sfc.wide.ad.jp>
Tomoyoshi Yokota <tomoyoshi.yokota.hs at kyocera.jp>

