C2C-C Requirements for Usage of NEMO in VANETs

draft-baldessari-c2ccc-nemo-req-00.txt

Roberto Baldessari
NEC Europe Ltd. Heidelberg

Andreas Festag
NEC Deutschland GmbH Heidelberg

Massimiliano Lenardi
Hitachi Europe SAS Sophia Antipolis
Outline

- VANET Scenario
- Overview of C2C-CC
- C2C-CC Technical Approach: A MANET-centric view
- Requirements for NEMO
 - Routing
 - Privacy
 - Security
- Conclusions
VANETs Scenario

- Special kinds of MANETs, supporting both **safety** and non-safety applications
- Single, short-range dedicated technology (802.11p draft) in basic systems
- Additional technologies (especially 802.11) in extended systems
- Peculiarities:
 - **High mobility**
 - **High number** of nodes
 - Costs restrictions to allow for high deployability
- **Internet**-based applications
 - Beneficial for safety purposes
 - Fundamental for non-safety purposes
Overview of C2C-C Consortium

- Industrial consortium (mostly) comprised of car manufacturers and electronics suppliers operating in Europe
- Primary goal: Defining a European standard for vehicular communication
- Aims at harmonizing with other bodies (e.g. ISO) to build an European infrastructure for ITS applications
- C2C-CC Handbook to be published by mid-2007
C2C-CC Technical Approach (1/2)

- Based on a slightly modified 802.11p
- Safety requirements have lead to a specific protocol stack offering:
 - Geographic packet distribution (Geocast)
 - Information-centric forwarding (data aggregation)
 - Cross-layer congestion control
 - Specific security/privacy features
- C2C Network Layer: Implements a position-based ad hoc routing protocol using GPS position (semi-reactive, on the fly forwarding)
- IPv6 layer on top of C2C Network Layer resulting in:
 - 2.5 layer providing ad hoc routing
 - IPv6 layer not aware of ad hoc routing (single logical link)
C2C-CC Technical Approach (2/2)

- **NEMO** to be used for **non-critical** safety applications and for **infotainment**. Main use cases:
 - Notification Services (traffic, weather, news)
 - Peer-to-peer applications (messaging, VoIP, file transfer)
 - Upload/Download services (maps, travel info, software updates, Internet)

- NEMO not supported by every car

- NEMO runs on top of the C2C Network Layer and is not aware of the ad hoc network
 - Advantages: Clean **separation of roles** reduces design complexity and requirements
 - Drawbacks: Additional C2C header increases **overhead** (European 802.11p frame TBD)
 - Performance and scalability proven by simulation and tests with **prototypes**. Measurements in Field Operation Tests (FoT) already planned
Requirements for NEMO: Routing

- Intermittent, rare connectivity requires a broader concept of Route Optimization: MRs should use MNP also independently of the Home Agent

- **Vehicle-to-Infrastructure** (Infrastructure available)
 - “Classic” (MIPv6-like) Route Optimization with Correspondent Entity is required
 - Highest priority for MR-to-CN (MR-to-CE)
 - Low priority for Visiting Mobile Node
 - Nested Mobile Networks not considered

- **Vehicle-to-Vehicle** (Infrastructure available or not)
 - MR-to-MR enabled by exposing MNP to egress interface
 - Issues: Route consistency, service provider control on MNP, privacy
Requirements for NEMO: Privacy

- Vehicular networks can potentially introduce new methods to invade user privacy (tracking)

- Unlike traditional Internet scenario, privacy issues concern the ad hoc domain

- Common approach in VANET is adopting pseudonyms
 - Temporary identifiers at different layers (MAC/NET), assigned by authority
 - Real identity is revealed only to trusted nodes
 - A pseudonym change requires updating the Binding at the Home Agent in order to keep sessions alive

- NEMO signaling and data exchange should not allow for linking of pseudonyms
 - HoA/MNP always encrypted in BU/BA
 - Outer header reveals Home Agent address...(!)

- Exposing the MNP on the egress interface should be subject to policies (only to trusted nodes)
Requirements for NEMO: Security

• For safety applications, data security is fundamental
 – Mandatory features: Integrity, authentication, non-repudiation
 – The routing protocol itself must include security features

• Currently considered approach:
 – Relying on a dedicated PKI
 – Using signature for safety payloads calculated including protocol header fields

• At this moment, very precise requirements cannot be provided

• Identified principles:
 – Security against already studied attacks (MIPv6) must be provided (IPsec to protect signaling and tunnel MR-HA, RO security)
 – NEMO must not introduce new security leaks for the C2C-CC applications nor render their security measures ineffective
Conclusions

- C2C-C Network layer provides 2.5 efficient and scalable ad hoc routing to IPv6 layer
- NEMO does not have to deal with ad hoc routing (in fact, it’s not designed for ;-)
- High priority requirements for NEMO
 - Route Optimization with Correspondent Node (Entity) in the Infrastructure
 - Direct MR-to-MR without infrastructure:
 - Is it in the scope of NEMO WG?
 - Should it be standardized as a NEMO extension or provided by the ad hoc routing protocol by injecting routes?
 - Privacy:
 - Encryption of constant identifiers (MNP, HoA)
 - Outer header impact to be analyzed
- Security:
 - IPsec for signaling
 - Too early to define more precise requirements
Empowered by Innovation