BGP, where are we now?

John Scudder and David Ward
IETF-68, March 22, 2007
Agenda

- Trivia
- Dynamic behavior
- Convergence properties and problems
- Convergence/stability work items
Goals and Priorities

- Goal: Maximize connectivity of Internet
- Convergence and stability are subsidiary to this
- Implication: Priorities
 - First: fastest service restoration
 - Second: minimize peak load on control plane
Focus

• This talk focuses on performance and stability
• There are other very important aspects of BGP
 • Services
 • Operations
 • Weird behaviors (wedgies, etc)
 • Security
 • ...
• But we don’t have all day
Shalt Not’s

• BGP uses ASes for loop suppression — and nothing else!
 • Speaking of “overloading things”… ASes are not locators. No topological significance.

• Auto-aggregation appears to be a non-starter
 • Even proxy aggregation is tricky, but that’s an operational consideration
MP-BGP

- BGP carries data for multiple address families (AFs)
 - Plain old IP (v4, v6)
 - VPNv4
 - Other things
- Not all AFs need to be present on all routers!
VPNs

- Often observed that VPN tables larger than Internet table
 - True, in aggregate
 - But, not true of any single VPN table
- Inherently parallelizable
 - No single PE or RR holds all VPN tables
- Operational challenges to managing
 - Some tools to do this, e.g. rt-constrain
BGP dynamic behavior

- Confusion even among routing experts
- Of course, surprising emergent behaviors are possible
- … but important to understand bounding conditions
BGP and TCP

- BGP runs over TCP
 - Flow control: important implications for dynamics
 - Intuition about TCP is usually wrong…
BGP under load

- When uncongested, BGP will pass updates as fast as they are received
- Modulo MRAI, dampening
- Degradation mode under (CPU) congestion: state compression
 - “Adaptive low-pass filter” behavior emerges
 - Things slow down, they typically do not melt
BGP under load [2]

• BGP adapts to speed of peer
 • Slow peer gets routes as slow as it wants (with state compression)
 • Fast peer gets routes as fast as it wants
 • Implication: One slow peer does not hinder overall convergence

• Update packing
 • Low prefix/update ratios when not congested… but that’s fine!
 • High ratios emerge under congestion… which is when needed
BGP convergence

- At least $O(n)$ in the size of the DFZ table
 - Fundamental to how BGP transports routes
- But full convergences don’t happen often!
 - At startup (“initial convergence”)
 - On rare occasions otherwise
- Hard to “fix” completely — but is it broke?
 - “BGP’s biggest, yet least important, problem.”
BGP convergence [2]

- Techniques to avoid full convergences
 - Graceful Restart
 - Nonstop Routing
- ... or to cover them up
 - Different flavors of fast reroute
- ... or to pre-converge by advertising extra routes
 - Best-external, multi-path and similar
Route Reflection

• RRs hide backup paths
 • Reduce RIB sizes (but less than you think)
 • Bad for convergence

• Convergence:
 • State reduction/data hiding
 • Faster convergence
 • Pick one
Known Algorithmic Deficiencies

- Path hunting
- Nonconverging policies
- At least $O(n)$ in DFZ size
Path Hunting

• Well-known amplification effect
• Approaches to reduce
 • Root cause notification
 • Propagation of backup paths
Propagation of Backup Paths

• Transit ASes seldom fully partition from each other

• However, when a single AS-AS link goes down, border router temporarily loses routes

• Due to aggressive data hiding by less-preferred border routers and RRs
Propagation of Backup Paths [2]

- Speculation: many “path disturbance” events caused by this effect
- Intra-domain backup propagation feasible today
- Cost: some additional RIB state within AS
- Benefit: faster internal convergence and global stability
Some Possible Tools

- As-pathlimit
- Aggregate withdraw
- Best-external
- Better instrumentation reusing WRD infra
- BGP free core (pick your encap)
- Dampening (with better parameters)
- Multi-path
- Root cause notification
Moving Forward

• Narrow down (or expand!) “possible tools” list

• Align costs and benefits
 • Those who pay, must benefit, or solution will never be deployed
 • Many examples of existing technically-excellent “solutions” to current problems… but problems still exist. Example: BCP-38
 • Deployment trumps all considerations!

• Focus on behavior under load (or making load go away!)
Dampening

• Misused in past (we were wrong about default parameters)

• Heavy contribution of few sites to GH data suggests very generous parameters which only penalize egregious flappers
 • Study needed to validate what constitutes “egregious”

• Given parameters, can be turned on today
 • Lower-than-low hanging fruit
 • Aligns costs and benefits
Punch Line

- BGP not in danger of falling over
 - Lots of runway
- IDR
 - Near-term improvements
- RRG
 - Fundamental changes, e.g. new routing and addressing architectures