
A Test To Allow TCP Senders to Identify
Receiver Cheating
Toby Moncaster, Bob Briscoe, Arnaud Jacquet
BT PLC

draft-moncaster-tcpm-rcv-cheat-00.txt

Intended for Standards Track



Background

_ TCP senders rely on accurate feedback from their receivers
about congestion

_ A dishonest receiver can:
_ optimistic acks: fool a sender into increasing its rate
_ conceal lost data segments: to avoid a congestion response

_ These attacks disrupt sharing of sender’s own resource
_ Both these attacks can fool sender into using excess network

resources by concealing the presence of congestion
_ There are some existing proposed solutions:

_ Randomly skipped segments – hold back a segment and
transmit it once a duplicate acknowledgement is received

_ The ECN nonce – the receiver has to guess the correct nonce
sum (NS) [RFC3540] for any lost segment or optimistic ack

_ A transport layer nonce – add a specific nonce to the transport
layer which has to be echoed back to the sender



Requirements for a Robust Solution

1. Any test mustn’t adversely affect existing congestion control
and avoidance algorithms

2. Any test should utilise existing features of the TCP protocol
3. It shouldn’t require the use of any negotiable TCP options
4. The receiver shouldn’t play an active role in the process
5. If this is a periodic test, the receiver mustn’t be aware that it

is being tested for honesty
6. If the sender actively sanctions any dishonesty it identifies, it

should be certain of the receiver's dishonesty before taking
action against it

7. The test shouldn’t harm an innocent receiver

In order to deal with such dishonesty, the sender has to identify
that it is occurring. This can be done using some form of testing
of the receiver. Any such test should meet certain requirements:



Assessing proposed solutions

Able to prove dishonesty?

xDoesn’t harm innocent receiver

n/an/aReceiver unaware of testing

xxxNo negotiable TCP options

xxReceiver plays passive role

xxUtilise existing features

Doesn’t interfere with congestion control

TCP
nonce

ECN
nonce

Skipped
Segments



Our proposed Solution

1. Delay a segment by a small amount to trigger duplicate
acks. If a receiver doesn’t send these correctly then
move to stage 2.

2. Delay a segment until a duplicate ack is received
showing the receiver is aware of the gap.

Our proposed solution is based on Rob Sherwood’s
Randomly Skipped Segments solution. But we avoid
harming innocent receivers by adding an initial stage

Key goal was to design system using basic TCP behaviour of
receivers. Approach allows honest senders to identify dishonest
receivers but not harm innocent receivers…



Stage 1 Test

_ To test a receiver, select segment S and displacement D
where 2 < D < K-2, K = current window size. Segment S is
transmitted after segment S+D

_ Receiver should generate D duplicate acks

SEQ

S-1

S+1

S+2

S+3

S

S+4
S+5 ACK

S-1 (-)

S-1 (S)

S-1 (S)

S-1 (S)

S+3 (-)

S+4 (-)
S+5 (-)



Assessing Stage 1 of the New Test

Comparing the stage 1 test against the list of requirements:

*Able to prove dishonesty?

Doesn’t harm innocent receiver

Receiver unaware of testing

No negotiable TCP options

Receiver plays passive role

Utilise existing features

Doesn’t interfere in congestion control

* The test doesn’t prove dishonesty but failing it strongly suggests
dishonesty



Stage 2 Test

If a receiver fails the first test we can perform a tougher test
similar to Sherwood’s skipped segment test

_ Select a segment, S. Start a congestion response. Don’t
transmit S until you receive a dup. ACK for segment S-1

_ If you receive an ACK for a segment between S-1 and R,
then the receiver fails the test

SEQ

S-1

S+1

S+2

S+3

.

.

.

.

.

.

R

S

ACK

S-1

S-1

S-1

.

.

.

.

.

.

.

.

R

SEQ

S-1

S+1

S+2

S+3

.

.

.

.

.

.

FAIL

ACK

S-1

S+1

S+2

.

.

.

.

.

.

.

.



Assessing Stage 2 of the New Test

Comparing the stage 2 test against the list of requirements:

Able to prove dishonesty?

*Doesn’t harm innocent receiver

Receiver unaware of testing

No negotiable TCP options

Receiver plays passive role

Utilise existing features

Doesn’t interfere in congestion control

* By this stage we are already suspicious of the receiver



Conclusions

_ Receiver cheating can skew a sender’s allocation of its own
resources (getting the cheating receiver more resources)

_ Receiver cheating can fool the sender into giving excess
network resources to the receiver, possibly causing collapse

_ This 2-stage test allows senders to easily identify cheating
receivers

_ It causes minimal problems for honest receivers
_ It encourages honest behaviour because cheating carries

delay penalty
_ Only requires modification of sender behaviour so easy to

implement
_ If enough senders implement this it provides protection to

network



draft-moncaster-tcpm-rcv-cheat-00.txt

Questions?


