The Problem

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>Mbps</th>
<th>MTU</th>
<th>Pkts/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 gigabit ethernet</td>
<td>10000</td>
<td>1500</td>
<td>812744</td>
</tr>
<tr>
<td>Gigabit ethernet</td>
<td>1000</td>
<td>1500</td>
<td>81274</td>
</tr>
<tr>
<td>Fast ethernet</td>
<td>100</td>
<td>1500</td>
<td>8127</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10</td>
<td>1500</td>
<td>813</td>
</tr>
</tbody>
</table>
Why still 1500?

- 1500 has been the (IEEE) law for 30 years
- Old equipment handles >1500 badly
- Higher speed ethernet segments must interconnect with older ones
- Can't fragment or negotiate neighbor properties at ethernet level
Big Packet Advantages

• More room for additional headers without path MTU discovery breakage

• Lower overhead, especially with large headers

• Less per packet work in hosts = faster

• Less per packet work in routers = possible power/head savings

• Better TCP performance
But...

Ethernet ID: 00:1b:63:92:9f:bb

Configure: Manually (Advanced)

Speed: 1000baseT

Duplex: full-duplex

Maximum Packet Size (MTU):
- Standard (1500)
- Jumbo (9000)
- Custom: 9000 (Range: 72 to 9000)

Caution: Setting MTU value above the standard ethernet setting (1500) may cause some routers to crash. Please check with your ISP before setting this value above 1500.
Jumboframes

• Lots of gigabit ethernet equipment supports larger packets: "jumboframes"

• Common value: ±9000 bytes

• but no standard non-standard size

• "mini jumbos" of ±2000 bytes common in lower-speed switches
Disadvantages (1)

- More delay and jitter
- so only do 1500+ at 1000 Mbps or faster
- Depend more on path MTU discovery
- see the problem if you break PMTUD
- can always reduce MTU (not increase...)
- few problems with large MTU in middle
PMTUD
Disadvantages (2)

• More packet loss from bit errors
• \(\text{ideal pkt size} = \sqrt{\frac{\text{overhead bytes}}{\text{BER}}} \)
• More undetected bit errors (?)
 • naive: more errors/packet, but fewer packets = no difference
 • complex: hamming distance makes CRC32 much stronger than expected
 • use stronger FCS for jumboframes?
The Solution

- Remove limitation that all nodes on subnet must use the same MTU
 - use standard MTU as default
 - negotiate per-neighbor MTU (and test)
- Hardware vendors must implement reasonable hardware MTUs
- Administrators may override at any point
The Protocol

- Learn IPv6 neighbor MTU from neighbor discovery option
- Send test packet
- Now ignore TCP MSS option and subnet MTU and use neighbor MTU
- IPv4: same thing but slightly different
Be Careful

- Router advertisement option:
 - MTUs for different link speeds
 - off-link MTU (for TCP MSS option)
- New "switch advertisement"
- let switches advertise supported MTU
Questions

• What do you think?
• stick to 1500 bytes until the end of time?
• experimental?
• standards track?
• go to IEEE in asbestos suit?
• Feedback: iljitsch@muada.com