Multicast Mobility in MIPv6: Problem Statement & Brief Survey Update

- draft-irtf-mobopts-mmcastv6-ps-01.txt -

Thomas C. Schmidt, Matthias Wählisch

{t.schmidt, waehlisch}@ieee.org

HAW Hamburg & link-lab

Outline

- Scope & Focus of the Document
- Status of the Draft
- Changes in Version 1
 - Bybrid Architectures
 - Interface Issues: MLD
 - Layer 2 Aspects: Wireless
- Discussion: Roadmap & Open Issues ?

Aim of the Document

- o Provide a comprehensive exploration of
 - MMcast problem space
 - Existing conceptual ideas for solution
 - Perspectives on operational environments
- o Outline a conceptual roadmap for initial steps

For use of future mobile multicast protocol designers

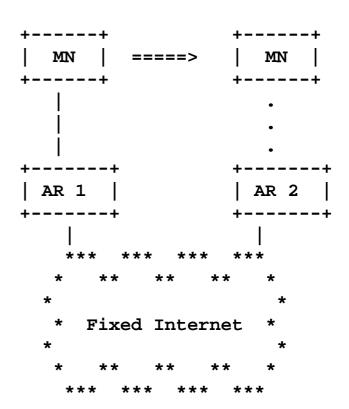
The Key Problems

Provide Seamless Multicast Services to and from MNs

- o Approach native multicast forwarding in an infrastructure-compliant manner
- o At Listeners:
 - Ensure multicast reception in visited networks
 - Organize context transfer between mcast-enabled access networks
 - Expedite multicast forwarding on handovers

o At Sources:

- Sustain address transparency at end nodes (address duality problem)
- Ensure persistence of receiver contact
- Bridge tardy tree reconstruction/transformation procedures


o At SSM Sources:

- Manage address transparency at routers (source filtering)
- Comply to source-specific security constraints
- o Focus on deployable solutions, minimize protocol extensions

Scope: Focal Scenario – MIPv6

Covers key issues

- o Mobile Multicast Membership
 - as Listener
 - as Source (ASM/SSM)
- o Interplay of Multicast Routing and Mobility

Scope: Side Focus – Nemo

Key issues inherited

Additional complexity basically covered by:

- o Encapsulation for clamping to fixed Internet positions
- o Flooding within mobile network (depending on the MANET routing)

```
Mobile Network
Fixed Internet
```

Status of the Draft

- o State at IETF68: draft-schmidt-mobopts-mmcastv6-ps-02.txt
- o Now RG Document: draft-irtf-mobopts-mmcastv6-ps
- Version 00 Minor update including
 - Interdomain protocols and deployment issues
 - Security aspects: CGA-support in listener & source updates
- o Version 01 Major update including
 - Hybrid approaches → SAM RG
 - Layer 2 aspects,
 examples 802.11, 802.16, 3GPP, DVB-H/IPDC, 802.21
 - First conceptual review by Kevin C. Almeroth
- o Version 02 in preparation following your input

Hybrid Approaches

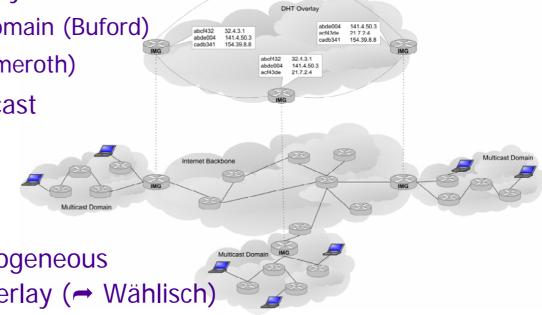
o Motivation: Bridge Interdomain Deployment Gap

o Establish Multicast Gateways or Peers

Within End System Domain (Buford)

At Access Routers (Almeroth)

o Transfer to Overlay Multicast


Tunnelling: AMT

Explicit: XCAST

DHT-based Overlays

o Mobility: Establish a Homogeneous Mobility-agnostic DHT Overlay (→ Wählisch)

o Work of SAM RG

Interface Issues: MLD

- MN has per interface aggregated states (groups + source filters)
- o AR has per network aggregated states
- o MLD frequently serves as L2 Mcast trigger
 - Lightweight MLDv2 (mboned): diminish exclude mode
- o MLD state transfer → Mcast context transfer
- o Issues: MLD is slow adjust Query Interval timer?
 - On leave → state pruning (timeout)
 - Leave on Pt-to-Pt Links → membership query dispensable
 - Leave expedition otherwise → state table at AR
 - On prediction → early state acquisition & early leave
 - On proxy → state maintenance (without forwarding)

Layer 2 Aspects: Wireless Multicast

Shared, limited media largely profit from group distribution services

widely supported

Technologies of significant difference:

- o Connectionless broadcast type: 802.11
 - Reduced reliability
 - Congestion thread
- o Connection-oriented point-to-multipoint type: 802.16, 3GPP/MBMS
 - Complex control
 - Reduced efficiency (no layer 2 source-to-destination transition)
- o Connection-oriented broadcast type: DVB-H/IPDC
 - Unidirectional (downstream only)

Layer 2 Aspects: Wireless Mcast (2)

o Address mapping: IPv6 Mcast → MAC/Channel ID

- 802.11: $112 \rightarrow 32$ (Ethernet)

- 802.16: To CID (16 bits, 8 reserved)

proposal $112 \rightarrow 4$ (with Scope)/8 (for Ethernet CS)

- DVB-H: To PID (13 bits),

based on dynamic tables

o Service mapping:

- MLD Snooping
- Multicast VLAN Registration (MVR for Ethernet CS)

802.11: Multicast on Broadcast NW

- A mobile Station sends multicast data to an AP in point-to-point channel (ToDS bit on)
 - Treated as acknowledged unicast
- o The AP repeats multicast frames to the BSS and propagates them to the ESS
 - Treated as unacknowledged broadcasts
- o Limited Reliability
 - increased probability of lost frames from interference, collisions, or time-varying channel properties
- o Delayed Distribution
 - AP buffers meast packets and waits for DTIM, if stations in power saving mode
- o Congestion Threat
 - Distribution System experiences multicast as flooding
 - Most APs provide configurable mcast rate limiting
 - Replicate meast packets over all APs in same IP subnet
 - ✓ MLD Snooping: at AP bridge (BSS : ESS) or connecting switches

802.16: Multicast on Point-to-Multipoint

- o SS sends multicast data to BS in point-to-point channel
- Multicast traffic identification at AR
 - But CID-initiation only at BS
- o BS may initiate downlink multicast distribution
 - Assigns common CID to all group members (SSs)
 - Automatic Repeat Request (ARQ) not applicable
- o BS operates as L2 Switch and may support MLD snooping (even MLD proxying in 802.16e)
 - On reception SS cannot distinguish multicast from unicast stream
- o Two link models: Point-to-Point and Shared IPv6 Prefix
 - Point-to-point contradicts IP-layer mcast service mapping
- o Address mapping: High CID collision rate, little selectiveness

Vertical Handovers

- o Context transfer needed for L2-only HOs
- o Vertical transfer addressed in 802.21
 - But required beyond IEEE protocols (DVB, 3GPP)
- o Mobility service transport for Media Independent Handovers (MIH) assigned to L3
- o Issues
 - Service discovery
 - Service context transformation
 - Service context transfer
 - Service invocation

Proposed Roadmap for Initial Steps

- 1. Multicast Listener Support
 - i. Extend Unicast Solutions FMIPv6, HMIPv6, ...
 - ii. Contribute Mobility Aspects to Specs in AMT and Hybrid Multicast Solutions
 - iii. Accelerate MLD
 - iv. Contribute to Vertical L2 Context Transfer
- 2. Multicast Sender Support for ASM
- Multicast Sender Support for SSM

Open Questions

o Deployment Aspects:

Further prospects relevant for deployment?

o Layer 2 Aspects:

Gaps to fill?

- Performance data for 802.16, MBMS, DVB-H?

o Multihoming:

Are there Multicast-specific Issues?

- Interface/connectivity maintenance → unicast
- Of course: Multicast context transfer may use multiple bindings ... as unicast does

💥 link-lab

Open Issues

o Anything else missing?

Please send your feedback to mobopts@irtf.org
to advance the quality of this document

