The HIP-HOP proposal
draft-matthews-p2psip-hip-hop-00

Philip Matthews
philip_matthews@magma.ca
HIP-HOP vs. the others

• Uses HIP (Host Identity Protocol) and leverages work of HIP WG.

• Three key differences:
 1) Architecture of P2P layer
 2) Definition of Peer ID
 3) How forwarding at peers is done
• Other proposals: monolithic P2P layer. HIP-HOP: Three separate protocols.
• Distributed Transport: deliver msg to arbitrary peer (even if behind NAT).
 – Focus of HIP-HOP proposal. Can adapt other proposals to provide Distributed DB and Overlay Maint protocols.
 – Distributed DB, Overlay Maint, SIP, and other apps use this layer for sending/receiving.
 – Supports apps other than SIP.
Diff #2: Peer IDs in HIP-HOP

- Public key is ultimate identifier of a peer.
 - Peer can prove ownership because it alone knows private key.
- Peer ID looks like IPv6 addr, but is distinguishable due to prefix.

Public / private key pair

- SHA-1 hash
- 2001:10/28 100-bit suffix

Peer ID looks like IPv6 address

Process defined in RFC 4843 and draft-ietf-hip-base.
Diff #2: Peer IDs

HIP-HOP
Peer ID is special IPv6 address with crypto:
• Prevents identity theft;
• Re-uses existing APIs and IPv6 protocol work;

Other Proposals
Peer ID is 160 bits (ASP is 128), no crypto:
• Can hijack a Peer ID;
• Need new APIs and protocol extensions;
Diff #3: Forwarding

- A UDP encapsulation layer is used when necessary to transport HIP through NATs.
- HIP layer also replaced/removed in certain cases.
Diff #3: Forwarding at Peers

HIP-HOP
Forwarding done below transport layer:
• Use Socket API and all existing transport protocols
 – Many apps = no change
 – Transport protos work with Peer IDs, not IP addresses
• Transport conn = end-to-end;
 – TLS security / reliability / congest cntl is end-to-end
• NAT traversal and mobility handled at HIP layer.

Other Proposals
Forwarding done above transport layer:
• Need new APIs
 – All apps must change
• Transport conn = hop-by-hop
 – TLS security / reliability / congest cntl is hop-by-hop = “link layers”
 – Some proposals try to patch some of these problems
• NAT traversal and mobility handled by each app separately.
Other Details in Brief

• Inherits well-thought-out security properties of HIP.
• Inherits HIP mobility support.
• High-level NAT Traversal strategy as in draft-matthews-p2psip-nats-and-overlays
 – (Same as dSIP, RELOAD, ASP)
 – Detailed NAT traversal procedures use HIP procedures (ICE)
• Bootstrap procedures as in draft-matthews-p2psip-bootstrap (adapted for HIP)
• HIP used for signaling overlay connections, and encapsulating application data
 – HIP header carries src and dst peer ID, etc.

• Interoperable open-source implementations of HIP for Windows, MacOS, Linux, and FreeBSD.
 – Working on HIP-HOP extensions.