Join failure notification
for PIM-SM multicast routing
draft-hilt-pim-tree-unreachability-00.txt

may 2007

updated/modified version of draft-hoerdt-pim-group-unreachable-00

B.HILT MIPS Haute Alsace University, Colmar - France
JJ. Pansiot LSIIT Louis Pasteur University, Strasbourg - France
M.Hoerdt IL21 Lancaster University, Lancaster - UK
Outline

Background

The needs

Our proposition: a PIM-Tree Unreachable message

A short evaluation

Summary
Background on Multicast routing management

PIM-SM is
- receiver driven
- one way without feedback
This means that:
- receivers create states in routers
 malicious receivers can easily launch DDoS on PIM-SM control plane
- if a PIM-join fails
 (transient routing problem, misconfiguration, user error)
- then
 + netadmin and users are not informed
 + useless trees, states, cyclic joins are maintained until problem is fixed or receivers quit the group

Need an “ICMP-like” feedback
The needs

There is a need to
 help netadmins on the receiver side
 making failure location and reason available
 => to inform users and/or fix problem
 help automatically flush useless trees
 especially important in case of DDoS

In this draft we deal only with control-plane problems,
not data plane problems (TTL problems, congestion, ...
A simple example: DDoS attack using RPembedded

N attackers (botnet) launch an attack against a prefix P.
Each attacker randomly generates k RP embedded addresses G such that the RP address embedded in G, say R, has prefix P.
For example if P is a /48, there are 2^{28} syntactically correct possibilities for R (64 - 48 bits in prefix part, 4 bits in RIID part).

Each attacker joins its k ASM groups.

=> $N \times k$ trees (states) created in the access router for prefix P.
With $N = 2000$ and $k = 50$ => 100 000 trees.
=> may well overwhelm routers (and deny legitimate multicast users).
=> hard to detect on the attacker side (only k joins).

Similar attacks with SSM (V4 or V6) choosing k random source addresses.
Our proposition (1/4)

A new PIM-SM message called **PIM-TU** for **PIM-Tree Unreachability**
- containing unreachability information for one or several trees
- generated by a Pim router detecting an error/anomaly (DDoS)
- forwarded hop by hop on the outgoing interfaces of the failed tree
- Note: sent to downstream routers, **not** to the failed group address

Possibility to aggregate error information for several trees
- effective for ASM and SSM mode,
- similar messages for Ipv4 and Ipv6.

A router receiving a PIM-TU for a group/channel existing in its TIB
- flags the corresponding TIB entry
- forwards the TU to each outgoing interface of this TIB entry
 - if there is a trusted PIM neighbor on this interface
- caches the TU for some duration if it is an **Edge** router for group:
 - if it has directly attached receivers
 - or it has an “untrusted” (eg not using TU) downstream router
Usage of this PIM-TU message: inform and/or flush

Inform:
 - unreachable conditions are propagated to edge routers
 - they can be logged
 - network admin has information on
 - which: group/channel
 - where: router unable to forward join (or unwilling)
 - why: reason of failure
 - depending on the location and reason of failure
 - network admin may try to solve problem, inform users, ...
Our proposition (3/4)

Usage of this PIM-TU message: inform and/or flush

Flush:

an edge router keeps in cache the PIM-TU message depending on the error condition,

may stop sending PIM-join messages

=> this will flush the tree upstream for the caching time

(Note: edge router could send a prune)

Particular (but important) case: DDoS

If the reason for failure indicated in the PIM-TU is DDoS

- logging with high severity may be used
- new cyclic joins may be suppressed for a long time
- IGMP-Reports from the offending interface (or host) may be filtered altogether
Cost vs Benefit

Cost
 signaling:
 number of PIM-TU a fraction of number of useless PIM-join messages
 memory: adds a few words per TIB entry
 in non edge routers these entries are flushed: low cost
 in edge routers these entries are kept a longer time
 => the burden is on edge routers

Benefit
 less states and signaling in core (non edge) routers
 debugging information available through edge routers
DDoS example revisited

Host starts sending IGMP-Report(G) embedding address RP with prefix P

Pim-join(G) forwarded toward P (*,G) state in intermediate routers

R detects an error for example RP not a valid RP
R sends TU(G,R) to neighbor on outgoing interface(s) for G

PIM-TU propagated hop by hop downstream
PIM-TU arrives at edge router E
E puts PIM-TU(G,R) in cache
E suppresses periodic PIM-join(G)
States for G disappears in all routers but E during caching duration
Relationship with other mechanisms

PIM attribute
In order to determine if a PIM neighbor implements the PIM-TU mechanism one could use a PIM-join attribute as in draft-ietf-pim-join-attributes-03

Relationship with mtrace (recently re-activated)
draft-asaeda-mboned-mtrace-v2-00

<table>
<thead>
<tr>
<th></th>
<th>MTRACE</th>
<th>PIM-TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>needs router participation</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>routing protocol</td>
<td>any</td>
<td>PIM</td>
</tr>
<tr>
<td>initiator</td>
<td>netadmin</td>
<td>upstream routers</td>
</tr>
<tr>
<td></td>
<td>(manual)</td>
<td>(automatic)</td>
</tr>
<tr>
<td>error diagnostic</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>data plane error TTL/congestion</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>DDoS detection and filter</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Seems that the two tools are complementary, could share some common error codes
Summary

Our proposition of a PIM-TU feedback message allows to:
- suppress useless trees branches (depending on failure reason)
- block DDoS attacks as close as possible to attackers
- give administrators helpful debugging information
- users may get failure information from their local netadmin
- or possibly from a local looking glass

Relatively simple mechanism

Keypoint: find good values for cache timers