Recall the questions

Q1: How to get mapping info
 Q1.1 How to inject the mapping info into the system
 Q1.2 Where to distribute, who holds the mapping info
 Q1.3 Where/who makes selection decision from multiple (Pi → Hi)

Q2: How to detect failure

Q3: How to handle failure
 Q3.1: Which nodes to inform
 Q3.2: How to handle in-flight packets
 Q3.3: which party holds the temporary failure info, and how to promptly remove it when failure recovered?

What APT does

- **Assumption**
 - PI (or equivalent) prefixes of edge sites are not routed globally
 - Packets are tunneled from ITRs to ETRs

- **APT**
 - Provide PI prefixes to ETRs mapping
 - Adapt to failures and recoveries

Three Types of Nodes in Transit Space

(no change to edges!)

- Standard routers (routers, blue)
- Tunnel routers (TRs, oragen)
- Default mappers (mappers, green)
Default Mappers

- These are a new device
- Store *all* edge prefix to transit-space (GRA) address mappings
- Each edge prefix maps to a non-empty set of GRA addresses
 - Each GRA address has a priority
 - Same priority? Use the shortest path
- At least one per AS
 - Use multiple for robustness, load sharing, shorter data path
 - Use anycast to reach nearest mapper
- Mappers tell ITRs which mapping entries to use

Tunnel Routers (TRs)

- Design goals for TRs: *minimal changes, stay simple*
 - Encapsulate outgoing packets (ITR mode)
 - Decapsulate incoming packets (ETR mode)
- Cache only mapping entries that are currently in use
 - No mapping entry? Tunnel packet to mapper's anycast address
 - Mapper (1) forwards the packet, and (2) responds with a mapping entry containing one GRA address for the edge prefix

Default Mapping Example

<table>
<thead>
<tr>
<th>edge prefix</th>
<th>GRA address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0.0/24</td>
<td>a.b.c.d</td>
</tr>
<tr>
<td>2.2.0.0/16</td>
<td>a.b.c.e</td>
</tr>
<tr>
<td>3.3.3.7</td>
<td></td>
</tr>
</tbody>
</table>

Standard Routers (“Routers”)

- These are the rest of the existing routers
- (roughly) no changes required to support APT
Mapping Not in Cache

<table>
<thead>
<tr>
<th>edge prefix</th>
<th>GRA address</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.0/24</td>
<td>a.b.c.d</td>
<td></td>
</tr>
<tr>
<td>2.2.0.0/16</td>
<td>a.b.c.e</td>
<td></td>
</tr>
</tbody>
</table>

Mapping Cache Miss!

Use the Default Mapper

edge prefix is Multihomed

<table>
<thead>
<tr>
<th>edge prefix</th>
<th>GRA address</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.0/24</td>
<td>a.b.c.f p.q.r.s</td>
<td>10 20</td>
</tr>
</tbody>
</table>

Default Mapper Selects a Mapping
Default Mapper Responds with Mapping and Delivers Packet

Packet Decapsulated and Delivered

Mapping Added to Cache

Next Packet
Mapping Already in Cache

Packet Encapsulated

Packet Delivered

Handling Temporary Failures

- Three situations require failover to alternate ETR addresses
 1. A transit space prefix is unroutable via BGP
 2. A single transit space address becomes unreachable
 3. A link between an ETR and user space fails
- Basic approach:
 - Temporarily invalidate the corresponding mapping entry
 - Do not change the mapping table
- Additional info at default mappers
 - Reverse mapping table: ETR to all PI-prefixes reachable through it
 - Time Till Retry (TTR) for each mapping entry
Situation 1: GRA Prefix Unroutable

- ITRs forward packets with unroutable destinations to their default mapper.
- Default mappers use mapping priorities to pick a routable GRA destination address.
 - And reply to ITR with a new mapping entry of a short TTL.

Situation 2: Single GRA address Failure

- Handling packets in-the-fly: minimizing losses.
 - In the ETR domain: Forwards packets destined to ETR to its default mapper.
 - At the ETR’s mapper: Tries to find an alternate GRA destination address to tunnel packet to.

- Informing the sender: 2 options.
 1. The involved router sends an ICMP destination-unreachable msg to sending ITR, which in turn forwards to its mapper.
 2. (with a well-known mapper address definition) ETR domain’s mapper sends the ICMP msg to ITR’s mapper; the ITR mapper informs the ITR.

- In either case: ITR’s mapper temporarily avoids corresponding mapping entries.
 - Set the TTR in the reverse mapping table.
Situation 2 Example

Situation 3 Example

Situation 3: Border Link Failure

- Handling packets in-the-fly: minimize losses
 - At the ETR: Forwards the data packet to its default mapper
 - At the ETR’s default mapper: Tries to find an alternate GR destination address to tunnel packet to
- Informing the sending AS: 2 options
 1. ETR sends an ICMP Border Link Failure msg to ITR
 2. ETR’s mapper sends the ICMP msg to ITR’s mapper; the mapper informs ITR
- In either case: ITR’s mapper invalidates mapping entry by setting its TTR for the particular edge prefix mapping entry

Distributing Mappings Between ASes

- APT has two distinct parts
 - Data forwarding
 - Mapping info distribution to mappers
- The latter can take any new distribution protocol once we have one
 - e.g. NERD, or CONS
- The current option: APT floods mapping info by piggybacking on BGP announcements
Distributing Mappings Between ASes:

- Define a new BGP transitive attribute
 - mapping entry: edge prefix to GRA address mapping
- An edge network sends signed mapping to all its provider
- A provider network floods their customers’ mappings to other provider networks via BGP
 - this GRA address may not have any relation with the prefix being announced
- All APT nodes (ITRs and mappers) listen
 - Default mappers store all incoming mappings
 - ITRs just invalidate cache entries that match incoming mappings

In Defense of piggybacking on BGP

- Mapping updates far less problematic than BGP routing updates
 - It only matters where mapping messages go, not what path they take
 - Only require processing at APT nodes
 - No path exploration for mapping messages
- Eases incremental deployment

Security and Robustness

- Wins
 - Transit space is not directly addressable from user space
 - Mapping announcements are only accepted from configured BGP peers
- Issues
 - ICMP packets are unreliable and can be spoofed
 - Mappings can be misconfigured

Security and Robustness for ICMP Packets

- Mapping messages
 - Only used within an AS,
 - drop them at AS boundaries if any trying to cross borders
- Border Link Failure messages
 - Can only be sent by GRA routers
 - Signature field allows easy addition of cryptographic securi
Incremental Deployment

- The user address space will not be affected
- Some edge prefixes will simply not have mapping
 - Packets destined for unmapped addresses are sent via the current infrastructure
 - TRs keep negative cache entries

Regular Mapping Refresh

- Newly added default mappers will need to get the full mapping table
- Allows stale mappings to expire
- Each provider re-announces its customers’ mappings on a regular basis
 - Daily? Weekly?
- New default mappers bootstrapping from other mappers

(near) Future Work

- Finish an incremental deployment design
 - Borrow ideas from other work (e.g. IvIP)
- Understanding TR cache size using real-world data
 - Help us get real data !!!
- Reliable key distribution/discovery
 - Edge network keys
 - Provider keys
- Securing ICMP msgs

Questions?

bgpng@cs.ucla.edu