Analysis of Centrally-Assigned ULAs

draft-mrw-6man-ulac-analysis-01.txt

Margaret Wasserman
margaret@thingmagic.com
IETF 70, Vancouver, Canada
5 December 2007
Goals of Draft/Presentation

- Understand current state of ULAs
 - Locally-assigned and centrally-assigned
- Discuss need for centrally-assigned ULAs (ULA-Cs)
- Discuss costs of defining ULA-Cs
- Understand arguments for and against
- Reach WG consensus on whether or not we should define a centrally-assigned class of ULAs
Non-Goals of Draft/Presentation

- NOT to discuss the details of a specific ULA-C proposal
- NOT to adopt a specific ULA-C proposal as a WG draft
- Those steps may follow IFF we reach consensus that we should define some type of centrally-assigned ULAs
Current Status of ULAs

- ULAs are defined in RFC 4193
 - Defines concept of Unique Local Addresses (ULAs)
 - States the properties of these addresses
 - That they are local addresses, may not be globally routable
 - Allocates FC00::/7 for these addresses
 - Defines a local allocation method for half of the ULA address space (FD00::/8)
 - Based on local random number generation
 - States that the other half of the address space (FC00::/8) is reserved for ULAs that use “another assignment method”
Specific Benefits of ULA-Cs

- **Greater assurance of uniqueness**
 - May be important when private networks span many enterprises, each of which may use ULAs for other private networks

- **Accountability**
 - If conflict arises, an enterprise administrator can prove that his/her enterprise has a right to use the prefix
 - Makes it possible to find the source of local traffic that is leaking out of its local boundaries

- **Reverse DNS**
 - Centrally-assigned ULAs could be included in the Reverse DNS
 - Needed to work with “security” features of some protocols/applications
 - Especially important in multi-enterprise case, where use of a consistent “two-faced” DNS is difficult
Costs of ULA-Cs

- **Address space consumption**
 - ULA-Cs would use the other half of the ULA address space (FC00::/8)
 - This would not reduce the number of general purpose IPv6 addresses, as these addresses have already been allocated for ULAs

- **New type of address registration**
 - Set-up and administration would consume some resources from the Internet community
 - What resources would depend on how these addresses are allocated, which is specific to ULA-C proposals
 - Costs might be offset by fees for ULA-C registration
Other Concerns about ULA-Cs

- Given that ULA-Cs have several benefits and minimal costs, why haven’t we already defined them?
- Several other issues have been raised regarding these addresses...
Lack of Value

- Arguments that benefits do not justify additional complexity/costs
- Belief that centrally-assigned ULAs will have no real benefits for enterprise applications over locally-assigned ones
 - Enterprise administrators may not understand level of uniqueness provided by random number generation?

- Counter argument: See previous statement of benefits
Wrong Way to Influence Policy

- Inappropriate
 - Address prefixes should not be tied to specific registry policies (see architectural argument on next slide)
 - If the community wants these addresses, registry policies could be updated to allow these allocations from regular IPv6 address space
 - No guarantee that any registry-allocated address space will be globally routable, so how are these addresses different?

- Ineffective
 - No direct connection between publication of an RFC and implementation of an address registration service
 - Better to publish an RFC stating needs, rather than solution?

- Based on assumption that ULA-Cs would be allocated by current IPv6 address registries
Architecturally Flawed

- Argument that associating routing behaviour with specific address prefixes is architecturally unsound
 - For example, see issues with IPv4 240/8 space

- Note, though, that the routing properties of the full FC00::/7 space have already been defined in RFC 4193, so definition of ULA-Cs would not change that
May Be Used as Global PI Prefix

- Concerns have been raised that ULA-Cs may be used as globally-routable PI prefixes
 - Because they are not allocated on a per-provider basis, may result in individual enterprise routing in the Internet routing tables
 - May become similar to IPv4 “swamp space”
- Would also apply to PI allocation of regular address space for local networks
- Registries are already assigning PI addresses to enterprises in some cases
Enables IPv6 NAT

- Concerns have been expressed that these addresses could be used behind an IPv6 NAT.

- However, centrally-assigned ULAs do not have an advantages for use behind NATs that are not already present in locally-assigned ULAs.
Questions for WG

- Do we think that some type of centrally-assigned ULAs should be available?
 - Do the benefits outweigh the costs?

- If so, do we think that these addresses should be defined in the IETF?
 - As opposed to just stating the requirement in a communication to the registry community? Other choices?

- Until we answer these questions, it doesn’t make sense to argue about the details of a specific proposal