EV-VBR RTP payload format proposal overview

AVT WG @ IETF 70

Ari Lakaniemi Nokia Research Center December 3, 2007

IPR

 Nokia may own IPR related to this draft. Nokia may submit a written IPR declaration, according to BCP79, pertaining to this draft, as soon as our experts have evaluated the situation.

Presentation overview

- Codec overview
- Proposed format overview
- Open issues
- Next steps

Codec overview

Scalable/layered wideband speech/audio codec (to be) specified in ITU-T SG 16

- Core codec sampling rate 16 kHz
- Core layer + 4 enhancement layers provide bit-rates 8, 12, 16, 24, 32 kbit/s
- Interoperable coding mode with the AMR-WB codec (at 12.65 kbit/s)
- The work on core codec to be completed early 2008

Work in progress (also) for extension options

- Super-wideband (SWB) providing wider audio bandwidth
- Stereo option
- To be finalized around mid-2008

Proposed payload format overview

Flexible packet/payload structure, enabling

- any number of frames per packet
- any (contiguous) subset of layers (of a frame) per packet

Enables usage with

- Single RTP session i.e. all layers carried within a single RTP session
 - Enables low IP/UDP/RTP overhead...
 - ... but requires media-aware network elements to enable in-network scaling
- Multiple RTP sessions i.e. subsets of layers in their own RTP sessions
 - May result in relatively high IP/UDP/RTP overhead...
 - ... but facilitates simple scaling by also media-agnostic network element

Progressive CRC checksum

Enable dropping parts of payload WITHOUT affecting the payload checksum → simple scalability

Codec bit-rate/configuration control

T.b.d → Currently one of the open issues

Proposed payload structure details

Overall packet structure: payload header (i.e. CRC) followed by encoded data

RTP header CRC TX block(1) TX block(2) TX block(r	TX block(2) TX block(n)
---	-------------------------

TX block format – the 1st (primary) TX block

Layer ID	NF	Encoded EV-VBR data

TX block format – a subsequent (secondary) TX block

Layer ID	NF	Encoded EV-VBR data	Tail
----------	----	---------------------	------

Data fields shortly:

- CRC (i.e. payload header): checksum over primary TX block
- Layer ID: layer configuration ID specifying the encoded data carried in this TX block
- NF: Number of frames in this TX block
- Tail: extra bits to force the progressive CRC checksum at this TX block to the desired value

Proposed payload structure examples

Examples on allocating two encoded frames into RTP packets

- Lx_v denotes Layer x of frame y; Colors indicate TX blocks
- All layers in single packet, separate TX blocks for each layer

RTP L1 ₁ L1 ₂ L2 ₁ L2 ₂ L3 ₁ L3 ₂ L4 ₁ L4 ₂ L5 ₁ L

All layers in single packet, separate TX blocks for core and enhancement layers

RTP	L1 ₁	L1 ₂	L2 ₁	L2 ₂	L3 ₁	L3 ₂	L4 ₁	L4 ₂	L5 ₁	L5 ₂
	-	_	_	_	-	_	-	_	-	_

Core and enhancement layers separately, two separate TX blocks for enh. layers

```
RTP<sub>1</sub> L1<sub>1</sub> L1<sub>2</sub> RTP<sub>2</sub> L2<sub>1</sub> L2<sub>2</sub> L3<sub>1</sub> L3<sub>2</sub> L4<sub>1</sub> L4<sub>2</sub> L5<sub>1</sub> L5<sub>2</sub>
```

All layers in separate packets

Open issue 1: Cross-layer/cross-session time synchronization

Possible solutions include

- Re-use RTCP based cross-session time sync mechanism (used e.g. for lip-sync)
 - Pros: Well-known and proven mechanism
 Does not require sending additional data
 - Cons: No cross-layer/cross-session sync until first RTCP SRs received (on all layers/sessions)
- Pre-synchronize the RTP timestamps in the transmitting end
 - Pros: Simple mechanism that does not require sending additional data
 Not dependent on protocol/profile behavior (e.g. timing of RTCP packets)
 - Cons: Payload specific solution (but also allows usage of RTCP based sync)
- Include synchronization data elements in the payload (e.g. a cross-layer timing reference in all/selected payloads)
 - Pros: Not dependent on protocol/profile behavior
 - Cons: Requires sending small amount of additional data within the payload Payload specific solution

© 2007 Nokia

Open issue 2: Codec bit-rate/configuration control

Current draft proposes to use RTCP-APP packet for bit-rate/configuration control

Based on initial feedback does not seem appropriate

Other possibilities include

- In-band signaling
 - Pros: Enables fast feedback loop, can be tailored for the EV-VBR codec
 - Cons: Not (well) in line with the RTP framework
- New payload specific message (RTCP packet type, AVPF FB packet)
 - Pros: Can be tailored for the codec
 - Cons: Codec specific solution
- New payload independent (RTCP packet type, AVPF FB packet)
 - Pros: Re-use of control message(s) for several payloads
 - Cons: Covering codecs with different requirements probably a challenging task
 (→ possibly a complex/sub-optimal solution?)
- Re-use an existing mechanism, e.g. TMMBR message of CCM
 - Pros: Existing generic solution
 - Cons: Requires usage of (S)AVPF, enables only control of bit-rate

Open issue 3: Layer configuration signaling

Layer configuration signaling in session set-up

- Capability description quite trivial, but offer/answer usage may need further considerations
- Current solution allows answer to modify the offered layer configuration (to a subset of offered layers)
 - May result in strange things in multi-session configurations
 - → Should this be limited to single-session configurations?
 - Is this desirable? Is this needed? Is this useful?
- Maybe separate media parameters for sending and receiving preferences/capabilities?

Next steps

Follow-up ITU-T SG16 work on the codec and reflect possible changes in the draft

Resolve & incorporate current open issues into the draft

Accommodate SWB & stereo options into payload format once more detailed (and final) information is available

- Note that G.729.1 codec and EV-VBR codec will share these features
 - → Common format or separate payload formats for both core codecs?

Adoption as an AVT WG item sometime in the near future?

