MADP
Multicast Address Discovery Protocol
IETF Vancouver – Dec 2007
Stig Venaas, Beau Williamson, Dino Farinacci
Agenda

• Problem Statement
• MADP Goals
• MADP Basics
• MADP Details
• MADP Example
Problem Statement

• Enterprise Networks wish to deploy Scoped Zones
 – Allows them to limit the scope of applications
 • Examples: Norton Ghost, Altiris
 – Many applications use “fixed” addresses
 • Often due to need for (near) zero-configuration operation
 • Some haven’t even bothered to register with IANA!!
 – Address Assignment by “Atmospheric Extraction”
 – Scope range maintenance becomes complex
 • Must make exceptions for these “rogue” applications
 • More and more such applications popping up
 – Need a way to achieve (near) zero-configuration and yet give network admin control of addresses used by apps
MADP Goal

- Provide simple alternative to “hardcoding”
 - Flexible and yet super simple technique
 - Provide Publicly available code library
 - Make things as simple as an API call
 - Provide more flexible scoped application deployment in multicast networks
 - Take away all “excuses” to hardcode addresses
MADP Basics

• Multicast Address Discovery Protocol
 – Very light-weight
 – Assumes no support infrastructure other than:
 • IP Multicast
 • RFC 2365 Administratively Scoped Zones
 – Well-Known Scopes (Local & Org. Local Scopes)
 – Scope Relative Addresses
 – No dependence on 3rd party infrastructure
 • Runs entirely in Application Clients and Servers
MADP Basics

• Servers listen on Scope Relative Addresses
 – When a Request is received, they check to see if they are the Server for application “X”
 – If so, they send a Response containing multicast address information
 • Address information was preconfigured by network admin
MADP Basics

• Clients performs Expanding Ring Search
 – Link-Local -> Local Scope -> Org-Local Scope

• Send Requests on Scope Relative address
 • IPv4 Link-Local is special case using:
 – MADP Local Scope Relative Address and
 – TTL=1
 – Request info on what multicast address(es) application “X” is using
RFC 2365 – Administratively Scoped Zones

- Defines only 2 Well-Known Scopes
 - Organization-Local Scope (239.192/14)
 - Largest scope within the Enterprise network (i.e. entire Enterprise Network)
 - Local Scope (239.255/16)
 - Smallest possible scope within the Enterprise network
 - Other scopes may be equal to but not smaller in scope
IPv4 Scope Relative Addresses – RFC 2365

Top 256 Addresses of every Admin. Scope Range

<table>
<thead>
<tr>
<th>Last Octet</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.255</td>
<td>-0</td>
<td>SAP Session Announcement Protocol (SDR)</td>
</tr>
<tr>
<td>.254</td>
<td>-1</td>
<td>MADCAP Protocol</td>
</tr>
<tr>
<td>.253</td>
<td>-2</td>
<td>SLPv2 Protocol</td>
</tr>
<tr>
<td>.252</td>
<td>-3</td>
<td>MZAP Protocol</td>
</tr>
<tr>
<td>.251</td>
<td>-4</td>
<td>Multicast Discovery of DNS Services</td>
</tr>
<tr>
<td>.250</td>
<td>-5</td>
<td>SSDP</td>
</tr>
<tr>
<td>.249</td>
<td>-6</td>
<td>DHCPv4</td>
</tr>
<tr>
<td>.248</td>
<td>-7</td>
<td>AAP</td>
</tr>
<tr>
<td>.247</td>
<td>-8</td>
<td>MBUS</td>
</tr>
<tr>
<td>.246</td>
<td>-9</td>
<td>MADP (Example only: To be assigned by IANA)</td>
</tr>
</tbody>
</table>
IPv4 Scope Relative – Local Scope

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.255.255.255</td>
<td>SAP Session Announcement Protocol (SDR)</td>
</tr>
<tr>
<td>239.255.255.254</td>
<td>MADCAP Protocol</td>
</tr>
<tr>
<td>239.255.255.253</td>
<td>SLPv2 Protocol</td>
</tr>
<tr>
<td>239.255.255.252</td>
<td>MZAP Protocol</td>
</tr>
<tr>
<td>239.255.255.251</td>
<td>Multicast Discovery of DNS Services</td>
</tr>
<tr>
<td>239.255.255.250</td>
<td>SSDP</td>
</tr>
<tr>
<td>239.255.255.249</td>
<td>DHCPv4</td>
</tr>
<tr>
<td>239.255.255.248</td>
<td>AAP</td>
</tr>
<tr>
<td>239.255.255.247</td>
<td>MBUS</td>
</tr>
<tr>
<td>239.255.255.246</td>
<td>MADP (Example only: To be assigned)</td>
</tr>
</tbody>
</table>
IPv4 Scope Relative – Org-Local Scope

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.192.0.0</td>
<td>Org-Local Scope</td>
</tr>
<tr>
<td>239.0.0.0</td>
<td>SAP Session Announcement Protocol (SDR)</td>
</tr>
<tr>
<td>239.195.255.255</td>
<td>MADCAP Protocol</td>
</tr>
<tr>
<td>239.195.255.253</td>
<td>SLPv2 Protocol</td>
</tr>
<tr>
<td>239.195.255.252</td>
<td>MZAP Protocol</td>
</tr>
<tr>
<td>239.195.255.251</td>
<td>Multicast Discovery of DNS Services</td>
</tr>
<tr>
<td>239.195.255.250</td>
<td>SSDP</td>
</tr>
<tr>
<td>239.195.255.249</td>
<td>DHCPv4</td>
</tr>
<tr>
<td>239.195.255.248</td>
<td>AAP</td>
</tr>
<tr>
<td>239.195.255.247</td>
<td>MBUS</td>
</tr>
<tr>
<td>239.195.255.246</td>
<td>MADP (Example only: To be assigned)</td>
</tr>
</tbody>
</table>

(Not to scale.)
IPv6 MADP

- Operates in the same fashion
- **Scope Addressing much easier**
 - Uses Scope Bits in IPv6 address
Why not use existing protocols?

- DNS – Domain Name Service
- SAP – Service Announcement Protocol
- SLP – Service Location Protocol
- Other?
Reasons to not use DNS

• DNS
 – Application is *still* dependent on external service (DNS Server, DNS Database) being configured before it can be deployed!
 • *NON-STARTER!*
Reason to not use SAP.

- **SAP**
 - Client could be swamped/flooded by SAP announcements for unwanted info
 - No way to request an announcement, so you have to send rapid announcements or wait for a long time
 - Parsing of SDP adds a lot of complexity
 - Overall SDP/SAP RFC size can scare off application developers
 - “Man, I don’t have time to read all of that stuff”
 - Remember: We want something super simple
Reasons to not use SLP

• SLP
 – Too complex for what is required
 • Highly unlikely to be adopted by app developers
 – Application is still dependent on external service (SLP Server) being configured before it can be deployed!
 • NON-STARTER!
Reasons to not use other approaches

• Other
 – In general, the application is *still* dependent on an external service being configured before it can be deployed!
 • *NON-STARTER!*
MADP Details

• Packet Format
 – Sequence of TLV’s

 +--------+--------+--------+--------+
 | Type | Length | Value |
 +--------+--------+--------+
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

• Types: Specifies the type
• Length: Specifies the length of the value field
• Value: Must always be of the specified length
 – If length = 0, value field is not included
MADP Details

- **Types**
 - (0) Request: Indicates packet is a Request
 - (1) Response: Indicates packet is a Response
 - (2) Request Name: Uniquely identifies application
 - (3) Vendor Name/ID (opt): Further ID’s application
 - (4) Client ID (opt): ID’s Client
 - (5) Request ID (opt): ID’s Request
 - If present in Request, returned in Response
 - (6) Multicast Group: Multicast Group Information
 - Used in Response only
 - May appear multiple times when more than one multicast address is in use by application
MADP Details

- **Multicast Group Type Data (Value field)**

 - Number of Srcs: Nonzero for SSM Support
 - Group Adr: Multicast Group Address
 - Source Address(es) (opt): Source Addresses
MADP Example

Application Foo uses 3 groups

App "Blah"
Server

Request

Multicast

(0)Request
(2)Request Name: “App Foo”
(3)Vendor ID: “Mr. Bill’s Software”
(4)Client ID: “Bubba”
(5)Request ID: 0x0123

App “Foo”
Client “Bubba”

Multicast Address Discovery Protocol 2007
MADP Example

Application Foo uses 3 groups

App “Foo”
Client “Bubba”

Multicast

(0)Request
(2)Request Name: “Foo”
(3)Vendor ID: “Mr. Bill’s Software”
(4)Client ID: “Bubba”
(5)Request ID: 0x0123
MADP Example

Application Foo uses 3 groups

App “Foo”
Client “Bubba”

App “Blah”
Server

Multicast

(0) Request
(2) Request Name: “Foo”
(3) Vendor ID: “Mr. Bill’s Software”
(4) Client ID: “Bubba”
(5) Request ID: 0x0123

App “Foo”
Server

Match
MADP Example

Application Foo uses 3 groups

(1)Response
(2)Request Name: “Foo”
(3)Vendor ID: “Mr. Bill’s Software”
(4)Client ID: “Bubba”
(5)Request ID: 0x0123
(6)Multicast Group: 239.225.100.1
(6)Multicast Group: 239.225.200.1
(6)Multicast Group: 239.225.200.2

Unicast
Discussion?

Assuming you didn’t speak up already. ;-)