# MADP Multicast Address Discovery Protocol

**IETF Vancouver – Dec 2007** 

Stig Venaas, Beau Williamson, Dino Farinacci

# Agenda

- Problem Statement
- MADP Goals
- MADP Basics
- MADP Details
- MADP Example

#### **Problem Statement**

- Enterprise Networks wish to deploy Scoped Zones
  - Allows them to limit the scope of applications
    - Examples: Norton Ghost, Altiris
  - Many applications use "fixed" addresses
    - Often due to need for (near) zero-configuration operation
    - Some haven't even bothered to register with IANA!!
      - Address Assignment by "Atmospheric Extraction"
  - Scope range maintenance becomes complex
    - Must make exceptions for these "rogue" applications
    - More and more such applications popping up
  - Need a way to achieve (near) zero-configuration and yet give network admin control of addresses used by apps

#### MADP Goal

- Provide simple alternative to "hardcoding"
  - -Flexible and yet super simple technique
  - Provide Publicly available code library
    - Make things as simple as an API call
  - Provide more flexible scoped application deployment in multicast networks
  - -Take away all "excuses" to hardcode addresses

#### **MADP Basics**

- Multicast Address Discovery Protocol
  - Very light-weight
  - -Assumes no support infrastructure other than:
    - IP Multicast
    - RFC 2365 Administratively Scoped Zones
      - Well-Known Scopes (Local & Org. Local Scopes)
      - Scope Relative Addresses
  - No dependence on 3<sup>rd</sup> party infrastructure
    - Runs entirely in Application Clients and Servers

#### **MADP Basics**

- Servers listen on Scope Relative Addresses
  - When a Request is received, they check to see if they are the Server for application "X"
  - If so, they send a Response containing multicast address information
    - Address information was preconfigured by network admin

#### **MADP Basics**

- Clients performs Expanding Ring Search
  - -Link-Local -> Local Scope -> Org-Local Scope
- Send Requests on Scope Relative address
  - IPv4 Link-Local is special case using:
    - MADP Local Scope Relative Address and
    - TTL=1
  - Request info on what multicast address(es) application "X" is using

# RFC 2365 – Administratively Scoped Zones



- Defines only 2 Well-Known Scopes
  - Organization-Local Scope (239.192/14)
    - Largest scope within the Enterprise network (i.e. entire Enterprise Network)
  - Local Scope (239.255/16)
    - Smallest possible scope within the Enterprise network
      - Other scopes may be equal to but not smaller in scope

# **IPv4 Scope Relative Addresses – RFC 2365**

#### Top 256 Addresses of every Admin. Scope Range

| Last<br>Octet | Offset | Description                                 |
|---------------|--------|---------------------------------------------|
| .255          | -0     | SAP Session Announcement Protocol (SDR)     |
| .254          | -1     | MADCAP Protocol                             |
| .253          | -2     | SLPv2 Protocol                              |
| .252          | -3     | MZAP Protocol                               |
| .251          | -4     | Multicast Discovery of DNS Services         |
| .250          | -5     | SSDP                                        |
| .249          | -6     | DHCPv4                                      |
| .248          | -7     | AAP                                         |
| .247          | -8     | MBUS                                        |
| .246          | -9     | MADP (Example only: To be assigned by IANA) |

# **IPv4 Scope Relative – Local Scope**



| Address         | Description                             |
|-----------------|-----------------------------------------|
| 239.255.255.255 | SAP Session Announcement Protocol (SDR) |
| 239.255.255.254 | MADCAP Protocol                         |
| 239.255.255.253 | SLPv2 Protocol                          |
| 239.255.255.252 | MZAP Protocol                           |
| 239.255.255.251 | Multicast Discovery of DNS Services     |
| 239.255.255.250 | SSDP                                    |
| 239.255.255.249 | DHCPv4                                  |
| 239.255.255.248 | AAP                                     |
| 239.255.255.247 | MBUS                                    |
| 239.255.255.246 | MADP (Example only: To be assigned)     |

# IPv4 Scope Relative – Org-Local Scope



| Address         | Description                             |
|-----------------|-----------------------------------------|
| 239.195.255.255 | SAP Session Announcement Protocol (SDR) |
| 239.195.255.254 | MADCAP Protocol                         |
| 239.195.255.253 | SLPv2 Protocol                          |
| 239.195.255.252 | MZAP Protocol                           |
| 239.195.255.251 | Multicast Discovery of DNS Services     |
| 239.195.255.250 | SSDP                                    |
| 239.195.255.249 | DHCPv4                                  |
| 239.195.255.248 | AAP                                     |
| 239.195.255.247 | MBUS                                    |
| 239.195.255.246 | MADP (Example only: To be assigned)     |

#### **IPv6 MADP**

- Operates in the same fashion
- Scope Addressing much easier
  - Uses Scope Bits in IPv6 address

# Why not use existing protocols?

- DNS Domain Name Service
- SAP Service Announcement Protocol
- SLP Service Location Protocol
- Other?

#### Reasons to not use DNS

- DNS
  - -Application is still dependent on external service (DNS Server, DNS Database) being configured before it can be deployed!
    - NON-STARTER!

#### Reason to not use SAP.

#### SAP

- Client could be swamped/flooded by SAP announcements for unwanted info
- No way to request an announcement, so you have to send rapid announcements or wait for a long time
- Parsing of SDP adds a lot of complexity
- Overall SDP/SAP RFC size can scare off application developers
  - "Man, I don't have time to read all of that stuff"
  - Remember: We want something super simple

#### Reasons to not use SLP

- SLP
  - Too complex for what is required
    - Highly unlikely to be adopted by app developers
  - -Application is still dependent on external service (SLP Server) being configured before it can be deployed!
    - NON-STARTER!

### Reasons to not use other approaches

- Other
  - -In general, the application is still dependent on an external service being configured before it can be deployed!
    - NON-STARTER!

#### **MADP Details**

- Packet Format
  - -Sequence of TLV's



- Types: Specifies the type
- Length: Specifies the length of the value field
- Value: Must always be of the specified length
  - If length = 0, value field is not included

#### **MADP Details**

#### Types

- (0) Request: Indicates packet is a Request
- (1) Response: Indicates packet is a Response
- (2) Request Name: Uniquely identifies application
- (3) Vendor Name/ID (opt): Further ID's application
- (4) Client ID (opt): ID's Client
- (5) Request ID (opt): ID's Request
  - If present in Request, returned in Response
- (6) Multicast Group: Multicast Group Information
  - Used in Response only
  - May appear multiple times when more than one multicast address is in use by application

#### **MADP Details**

Multicast Group Type Data (Value field)

- Number of Srcs: Nonzero for SSM Support
- Group Adr: Multicast Group Address
- -Source Address(es) (opt): Source Addresses

# **Application Foo uses 3 groups**







# **Application Foo uses 3 groups**







# **Application Foo uses 3 groups**





#### **Multicast**



# **Application Foo uses 3 groups**







(2)Request Name: "Foo"

(3) Vendor ID: "Mr. Bill's Software"

(4)Client ID: "Bubba" (5)Request ID: 0x0123

(6)Multicast Group: 239.225.100.1 (6)Multicast Group: 239.225.200.1 (6)Multicast Group: 239.225.200.2





#### Discussion?

# Assuming you didn't speak up already. ;-)