Multiple Packetization Time in SDP
Problem statement & Requirements

draft-garcia-mmusic-multiple-ptimes-problem-01.txt

IETF 70, MMUSIC WG
Vancouver, 12/2007
Marc Willekens
Miguel Garcia
Peili Xu
Problem

- SDP defines the ptime/maxptime
 - common parameter for all media formats in m-line
 - not possible to specify this in f(codec)

m=audio 49170 RTP/AVP 0 4 8
a=ptime:30
a=maxptime:60

- codec 0, 8 (PCMU, PCMA): sample based codecs
 but some hardware have fixed 10 ms buffer
 RFC3551 defines a default 20 ms ptime

- codec 4 (G723): speech frame of 30 ms

- in case of IOT problems:
 mostly a quick, proprietary fix
Changes in version 01

- list of RFCs related to ptime/maxptime (definitions, recommendations, requirements, default value)
- Example of a problem case
- Requirements as indicated at IETF.69 meeting
 - limitations in DSP silicon
 - QoS budget calculations
 - Interworking issues
 - Codecs implemented in hardware
- A list of different solutions already proposed during the last years.
Different views

- ptime in f(codec)
 - Codec experts: no
 - IOT (SIPit): yes
 - SDO (Docsis, ITU): yes
 - SDP implementers: don’t know what to do

- Signalling
 - loose coupling - preference model (IETF model)
 - strong coupling - strict signaling (Telco model)
Requirements

- Codec experts
 - no requirements. ptime/maxpttime is a system/network parameter related to packetization delay;

- IOT
 - Suffering from many different semantic interpretations.

- SDO
 - Provided own attributes to the SDP
 - ITU V.152: defines maxmpttime attribute
 Maximum multiple ptime to indicate the supported packetization period for all codec payload types.
 - Docsis: defines mptime attribute

- SDP implementers
 - Asking for a “common” solution to avoid different semantics.
Some examples

- **HW implementations issues**
 - Many have fixed 20 ms buffer between codec/DAC.
 - Sample based codecs (G711): different buffer sizes in use (10 ms, 20 ms, dynamic)
 - problem case: G711, iLBC, ptime=20 but HW only supporting 10 ms for G711
 - 20 ms is supported by most codecs. Frame based codecs of 30 ms frame size (iLBC, G723) gives problems.

- **Docsis**
 - Dynamic Timeslot
Cable networks (DOCSIS)

- Main requirement
 - Optimization of resource usage in a time-slot reservation system
- Cable modem <-> CMTS
 - CMTS = cable modem termination system
- Service grant system for upstream traffic
 - from CM to CMTS
 - CM request a “transmission timeslot” at CMTS
 - amount of bytes/timeslot reservation
- Main problem related to upstream
 - SDP capability negotiation?
 - for downstream: CMTS can schedule the transmission and take care of packet size changes
Real problem

- Semantic problem?
- Technical problem?
- Implementation issue?

- What will be solved by $\text{ptime} = f(\text{codec})$?
 - requires negotiation instead of indication
 - min, max, range value
 - introduces more complexity/problems
 - what improvement can be obtained?
Next steps

- Further clarification with PacketCable
 - ptime, maxptime, bandwidth parameter

- Clarify if multiple ptimes is a standardization or implementation issue.

- Propose a solution for the use of ptime/maxptime in different scenario’s.