# Skitter vs. DIMES: Topology-based Simulations of Mobility-related Protocol Metrics

<sup>1</sup>HAW Hamburg & <sup>2</sup>link-lab

70th IETF Meeting, 2007



1

## Agenda

Motivation

Current Large-scale Measurement Projects

Characteristics of Skitter and DIMES

Conclusion & Outlook



#### Motivation

- Topologies are ingredients for simulations and analytical studies
- Graph properties help to describe the topology
- Example 1: Handover performance estimates for FMIP
  - Determine distance between two nodes inside a city
  - Derive anticipation time based on inter-access router delay
- Example 2: Multicast mobility
  - Mobile multicast routing complexity depends on state changes
  - Calculate router states persistent under handoff
- ⇒ We need to include real-world measurements into analysis and simulations





# Current Large-scale Measurement Projects

#### Skitter

- ▶ 26 global monitor points
- Continously refreshed destination list of 971k nodes
- ► AS, IP and router level view
- http://www.caida.org/ tools/measurement/skitter/

#### DIMES

- Distributed architecture of volunteer agent hosting (> 15k agents)
- Agent based on Java
- Dynamic destination list
- ► AS, IP and router level view
- http://www.netdimes.org





# Tool Chain: Topology Generator & Converter

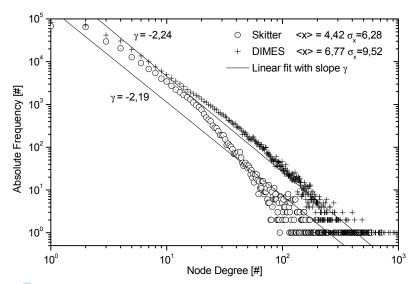
- Steps to solve:
  - Pre-processing: Clean up original data (s. DIMES)
  - Data filters
  - Data export to well known simulator formats
- For comprehensive tool chain extend existing generator
  - Boston University Representative Internet Topology Generator
  - ▶ BRITE supports many topology models, modular architecture
- BRITE extension includes
  - ▶ Import of DIMES and Skitter data
  - Filter schemas: Map sampling and radius view
  - Additional graph analysis
- DIMES fix script & extension available at: http://www.realmv6.org/brite-extension.html





# Comparing Skitter and DIMES

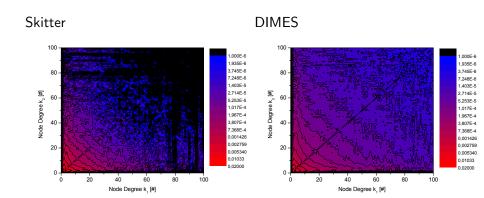
#### **Graph Metrics**


- Average node degree, degree distribution, . . .
- ▶ Is there a comprehensive metric to conclude to other metrics?
  - ▶ Mahadevan *et al.*: "The Internet AS-Level Topology: Three Data Sources and One Definitve Metric", CCR, 26 (1), 2006
- ▶ Joint degree distribution  $P(k_1, k_2)$ 
  - Describes a correlation
  - ightharpoonup Randomly selected edge connects nodes of degree  $k_1$  and  $k_2$
  - Reflection symmetric distribution
  - Gives information about 1-hop neighbourhood of nodes





## Graph Characteristics: Skitter vs. DIMES


#### Degree Distribution





## Graph Characteristics: Skitter vs. DIMES

Part of Joint Degree Distribution







### Conclusion & Outlook

- Different measurement approaches
  - ▶ End devices or infrastructure centered
- Fix DIMES data before use
- ▶ DIMES sees more interconnections, i.e., core structure
- Skitter provides data from individual vantage points
- Conclude from general graph properties to mobility metrics



