Secure Peer-ID Assignment in P2PSIP

Eric Rescorla
Network Resonance
ekr@networkresonance.com
Background

- This talk is only about peer-id-based security methods
- Need to be able to authenticate that a peer has a given ID
 - Otherwise a variety of routing attacks are possible
- In practice, this means cryptography
 - Need to bind peer-id X to its public key
 - But how?
Cryptographically Generated Peer-Ids

- Peer generates a random key pair K_{pub}, K_{priv}
 - $I = SHA1(K_{pub})$
 - This gives you a “random” peer-id
 * Because of the SHA-1

- How does authentication work?
 - Peer signs something with K_{priv} and sends signature, K_{pub}, I
 - Relying party verifies signature and that $I = SHA1(K_{pub})$

- This is the technique used in HIP
Chosen Location Attacks

• Attacker wants to get between X and $\text{predecessor}(X)$
 - A random node-id has a $1/N$ chance of being in $(\text{pred}(X), X)$
 * Where N is the number of nodes in the overlay
 * The size of the hashspace is irrelevant

• An attacker can succeed in average $N/2$ trials
 - This is an offline attack

• Two basic countermeasures
 - Slow down the search (but keep it offline)
 - Make it an online attack
Proof of Work

• Idea: make generating candidates expensive
 – Example: partial preimage
 * $PeerId = SHA1(X)$
 * Bottom n bits of $PeerId$ must be zero
 · Need to try average 2^{n-1} X values to get a valid $PeerId$
 * This increases search cost by 2^{n-1}

• The puzzle must be tied to the peer-id
 – Otherwise the attacker can solve the puzzle once and then generate many peer-ids
 – This is why CAPTCHAs are hard to deploy here

• This only works well when the attacker isn’t powerful
 – ... by comparison to the average user
 – Not true with botnets
Invitations

• What if an existing peer asks you to join [MI07]
 – You start as a client with
 * But you can’t attack anyone since you’re not a peer
 – The responsible peer invites you to become a peer
 * Chooses your peer-id
 * Splits his zone of responsibility with you

• Not clear how this helps
 – Attacker chooses his victim peer
 * Joins the overlay
 * Waits to be invited as a client
 * This gives partial control of location
 – Also, how do you cryptographically bind key to peer-id
Central Enrollment Server

- We have a central server
 - Joining peer contacts the server with his public key
 - Server validates peer somehow
 - Server issues a certificate with a random peer-id
- This makes the attack online
 - Even if no authentication is performed, you need a lot of queries to the server
 - If you have user authentication, then you only get one query
A quote from our charter

The initial work will assume the existence of some enrollment process that provides a unique user name, credentials, and an initial set of bootstrap nodes if that is required by the protocols. Developing a non-centralized enrollment process is not in scope.