ECC Design Team: A Second Report

Dan Brown, Russ Housley, Tim Polk, Sean Turner, Kelvin Yiu

December, 2007
Specifying ECC Public Keys

- RFC 3279
 - Algorithm OID indicates elliptic curve, and includes algorithm parameters
 - In conjunction with key usage extension, can restrict a key to signatures or key agreement
 - Cannot differentiate a key intended for DH from an MQV key
Design Team’s Initial Proposal (from “final” report)

• Retain 3279 OID/parameters
 – Critical mass is finally emerging!

• Specify certificate extension as SHOULD implement for CAs and clients
 – Criticality provides opt-in/opt-out mechanism to select interoperability or control
 – Applications can take advantage of hints in noncritical extension, even where unrecognized by the path validation module

• Consistent with current application/protocol expectations (Algorithm OID plus extensions)
WG Response to Initial Proposal

• Don't put algorithm constraints in an extension.
ECC Design Team, Part 2

• Reformed Design Team
 – Decided two constraints needed to be supported for IETF protocols: *only DH or only MQV*
 • Constraints on hash algorithms (for signature keys) or KDFs (for DH and MQV) should be negotiated by the protocol
 – The ecPublicKey OID is mandatory to implement for IETF protocols
 • *Implementations* may be configured to require the constrained keys
Notes on ECC Signature Keys

- Key Usage already constrains usage
- Signature keys are inherently different
 - The signature verifier must use the algorithm and parameters specified by the signer to verify a signature, there is little chance for unintentional misuse of the public key.
- So, ecPublic-key is believed sufficient
Considered two strategies

• X9.62-2005 based
 – Restrictions are specified in the algorithm parameters in a SEQUENCE
 – IETF profile would limit SEQUENCE to only one restriction

• RFC 4055 based
 – Define two new algorithm OIDs, ecMQVPublicKey and ecDHPublicKey
X9.62-2005 based solution

• Pros
 – Strong alignment with ANSI and SECG
 – Migration path to additional granularity
 – Streamlined algorithm negotiation

• Cons
 – Application level parameter processing
RFC 4055 based Solution

• Pros
 – Same parameter structure for restricted and unrestricted public keys
 – No application level parameter processing

• Cons
 – No migration path to restrictions with higher granularity
Selected Proposal

• RFC 4055 based solution
 – Specify two new algorithm OIDs in X9 arc for inclusion in PKIX spec and X9.63
 • Retain the ecPublicKey algorithm syntax
 – IETF protocols that support the new OIDS MUST also support ecPublicKey
Rationale

• Protect deployed base for ECC keys
• Applications process same information for all ECC keys
• Compliant subset of X9 standards
Supplementary Design Team Proposals

• ECC Parameter handling
 – Named curves are more efficient to process than inherited parameters
 – MUST support for named curves
 – Support for explicit and inherited parameters is optional

• RFC 4055
 – KDF restrictions MUST not appear in certificates (currently SHOULD NOT)
Next Steps

• Design team will submit a new ID for consideration by WG
 – ID would obsolete both 3279 and 4055
Questions?