Simple Key Establishment Methods for the TCP-AO Option

Brian Weis
The TCP-AO Use Case

• The TCP Authentication Option (TCP-AO) option is expected to replace the use of RFC 2385
 – Used to protect BGP & LDP routing protocols
• The most important target platforms are very large IP routers operated by service providers
 – Highly available special-purpose routers
 – A router may have many (i.e., up to 2000) BGP peers
Availability

• Commercial network operators consider *availability* to be more important than *integrity* in their threat model.

• Any key establishment method will be evaluated by network operators according to its perceived risk to availability.

• A simple and reliable key establishment method is most likely to maintain current levels of *availability*.
Known Simple Key Establishment Methods

- Simple key establishment methods with known security properties exist. E.g.,
 - Key Transport
 - Encrypted key protected with a long-term KEK
 - Key Derivation Using a Counter
 - Derive a key from a master key and a counter
Summary

• *Simple* and *reliable* key establishment is needed.
 – Any method perceived by network operators as negatively affecting *availability* will not be deployed.

• It would be a shame if operators refused to use whatever key establishment method is standardized because it did not match their operational model.
 – We need a clear set of requirements stating the operational constraints