SAVI IP Source Guard

draft-baker-sava-implementation

Fred Baker
Cases covered in the draft

- Draft specifies IPv6, could include IPv4
- Network cases:
 - Switched LANs and access networks
 - Protect in switch
 - Non-switched LANs and access networks
 - Protect neighboring host and router from peers
 - Upstream router
 - Traditional ingress filtering
Premises:

- Addresses assigned using DHCP or SAA
- Multiple addresses per interface
- On interfaces with sub-interfaces such as VLANs, the sub-interface is under discussion
- Host has one interface
 That said, see draft-baker-6man-multiprefix-default-route
 Proposes separate default routes/default gateways by source address
 One could protect more cases with that model
Trust Anchors

• The key is to associate an IP address with a stable lower layer entity or set of entities:
 – Physical or logical port
 – 802.11 radio association
 – Ethernet MAC Address
 – Virtual circuit or other tunnel

• Every link layer has trust anchors that can be used for network layer address verification
Algorithm for switched LANs

- Implement in the switch
- Snoop Neighbor Discovery
 - DHCP or SAA assignment
 - ND or SeND negotiation
 - Yes, that’s a layer violation.
- Autoconfigure port or port+MAC filter on Solicitation/Response exchange
 - Discard IP traffic that doesn’t use properly negotiated addresses
- Routers still can’t be protected
Algorithm for non-switched LANs

- Implement in host/router
- Use Neighbor Discovery Tables
 - DHCP or SAA assignment
 - ND or SeND negotiation
- Autoconfigure address: anchor filter in hosts/routers on Solicitation/Response exchange
 - Discard IP traffic that doesn’t use properly negotiated addresses
- Routers:
 - Hosts still can’t be protected against routers
 - Routers can protect themselves from rogue hosts

DHCP optional
Defense in Depth: Upstream Router

- Essential concept:
 - If neighbor is legitimately advertising a prefix to you, you might legitimately receive traffic from that prefix.
 - If he’s not, you probably shouldn’t.

- At administrative boundaries, it is wise to verify address usage to the extent possible.

- BCP 38/RFC 2827 ingress filtering still valuable.
The snaky case

• Hosts may have multiple interfaces without routing between them.
 – Hosts send “from” the IP address of the interface they request on.
 – Hosts respond “from” the IP address the request was sent to.
 – Host routing may not send data back the way it came.

• Implication:
 – Hosts with multiple interfaces cannot be protected under these assumptions.
 – But see draft-baker-6man-multiprefix-default-route.
Value of source address verification

- Removes attacks that use spoofed addresses
- If I have eliminated spoofed addresses, I know that remaining attackers are using their real ones
- If I then eliminate traffic from/to bots, I free bandwidth for useful traffic
- My customers are happier.
 - I may also gain customers if I build a reputation for having few successful attacks.
Security considerations: problem #1

- Spoofed addresses generally happen on first packet attacks
 - SYN attacks, DDOS, etc
- ND/SeND triggered by first packet - sending datagram to unknown destination
- New attacks:
 - First packet attacks on hosts still work in non-switched case
 - Host generating large number of addresses can fill neighboring host/router/switch tables
Security considerations: solution #1

• Any system **MAY** impose an upper bound on the number of addresses per neighbor it will store
 – If it does so, it **SHOULD** release old entries in a LRU fashion as is done with SYN attacks

• Any system receiving a datagram from a unknown neighbor **SHOULD**
 – Initiate ND/SeND to learn of the neighbor
 – Drop or queue the datagram pending ND/SeND resolution of the address
 – If queued, only then operate on it
Security considerations: Problem #2

- Stateless Address Autoconfiguration enables a “Front-running” attack:
 - Alice starts Duplicate Address Detection
 - Bob sees her probe and immediately starts using the address *without* DAD - for example, sends a LAN broadcast ping “from” that address
 - Alice is denied the use of the address
Security Considerations: Solution #2

• Don’t allow front-running attacks
• Presume:
 – Carol does not know of a system using address A
 – Alice initiates Duplicate Address Detection for the address
 – Carol receives the probe
 – Carol subsequently receives a datagram from Bob using the address
• Carol SHOULD drop Bob’s datagram with prejudice.