Advancing RFC 4138
<draft-ietf-tcpm-rfc4138bis-01>
<draft-kojo-tcpm-frto-eval-01>

Pasi Sarolahti
Markku Kojo
Kazunori Yamamoto

Max Hata
IETF-70 / TCPM / Vancouver, BC, Canada / December 4t 2007



Problems with regular TCP

» On Spurious Timeouts

- Regular TCP sender retransmits whole window unnecessarily
in slow start

- Network resources are wasted
 In many cases severe performance penalty to the TCP flow

- Dishonors packet conservation principle



F-RTO: Detecting Spurious RTOs

- F-RTO slightly modifies TCP sender behavior

- After RTO retransmission try to send a couple of new segments

- If new acknowledgements for non-retransmitted segments flow in,
assume RTO was spurious

- Otherwise new segments trigger DupACKs, and sender should
assume genuine RTO

- No TCP options required
- Compatible with existing TCP implementations
- Does not cause network congestion

- Might not detect spurious timeout in some cases

- If F-RTO does not detect spurious RTO, it reverts back to
traditional RTO recovery



Current Progress

- Revised RFC 4138 targeting at PS <draft-ietf-tcpm-rfc4138bis-01>

- Changes from -00:

- Added back the original SACK-algorithm from RFC 4138 after the
common feedback to have the SACK-algorithm in the document

- Clarified behavior on multiple timeouts

- Clarified that ACKs that do not acknowledge new data but are not
duplicate acknowledgements are ignored

-+ Other small clarifications on both algorithms and general editing
- Added one paragraph describing the basic idea of the SACK algorithm



Current Progress (cont’d)

- Wrote I-D "Evaluation of RFC 4138"
<draft-kojo-tcpm-frto-eval-01.txt>
Points out the problems with regular RTO recovery and
usefulness of F-RTO

Evaluates F-RTO to show it is not harmful to the network, corner
cases included

Summarizes experimentation results

- Changes from -eval-00:

- Added a summary on experimentation with malicious receiver

- receiver does not benefit from cheating when conservative response
is used

* receiver may benefit when aggressive response is used
General editing



Ready to advance?

A number of known F-RTO implementations are out there

Proposals and support to advance to PS have been
expressed several times by implementors

Experimentations have been carried with several
implementations showing positive results

All feedback has been positive
Implementors: straightforward to implement
no issues with the spec

Many implementations enable F-RTO by default
+ Windows Vista
+ Microsoft report at IETF-68 about their positive experiences
Linux

- SACK-enhanced F-RTO enabled by default from up-coming
release of 2.6.24 and onward, and falls back to basic variant if
SACK not negotiated



Next Steps

- Basically ready for WGLC

* First need green light from WG for advancing to PS



