Structured Streams: A New Transport Abstraction

Bryan Ford Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

ACM SIGCOMM, August 30, 2007

http://pdos.csail.mit.edu/uia/sst/

Current Transport Abstractions

Streams

- Extended lifetime
- In-order delivery

Datagrams

- Ephemeral lifetime
- Independent delivery

Examples:

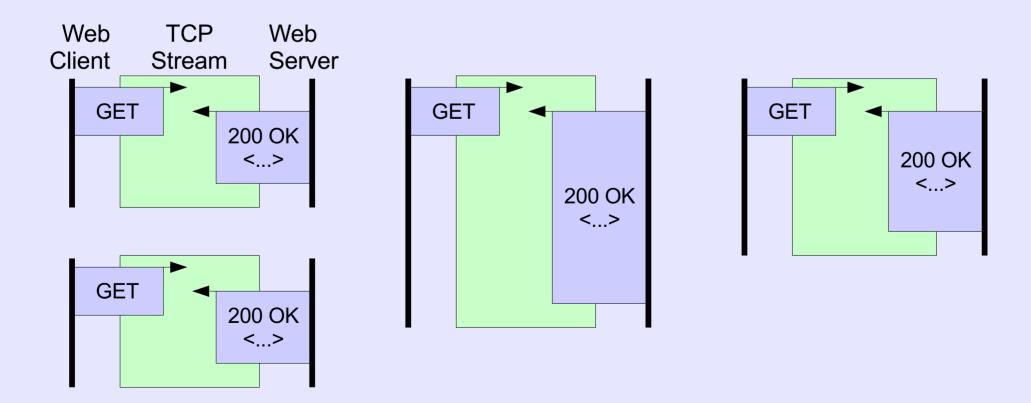
- TCP
- SCTP

Examples:

- UDP
- RDP
- DCCP

Simplistic Overview

The Problem:


- Streams don't quite match applications' needs
- **Datagrams** make the application do everything

The Solution:

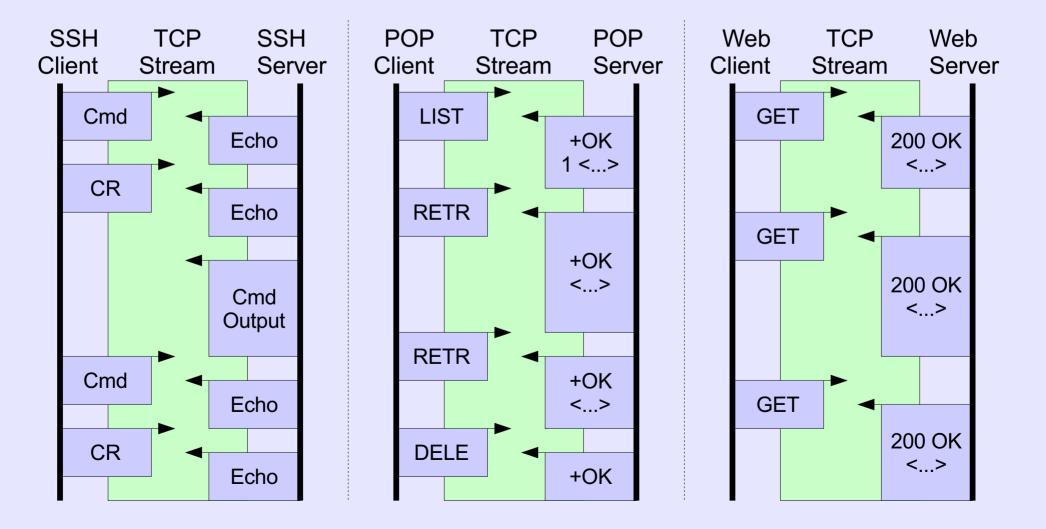
• Structured Streams: like streams, only better

How Applications Use TCP

Natural approach: streams as transactions or application data units (ADUs) [Clark/Tennenhouse] Example: HTTP/1.0

TCP Streams as Transactions/ADUs

Advantages:


- Reliability, ordering within each ADU
- Independence, parallelism between ADUs
- Application-Layer Framing [Clark/Tennenhouse]

Disadvantages:

- Setup cost: 3-way handshake per stream
- Setup cost: slow start per stream
- Shutdown cost: 4-minute TIME-WAIT period
- Network cost: firewall/NAT state per stream
- Network cost: unfair congestion control behavior

How Applications Use TCP

Practical approach: streams as sessions

TCP Streams as Sessions

Advantages:

- Stream costs amortized across *many ADUs* Disadvantages:

TCP's reliability/ordering applies across many ADUs
 Unnecessary serialization: no parallelism between ADUs
 Head-of-line blocking: one loss delays everything behind
 ⇒ TCP unusable for real-time video/voice conferencing
 ⇒ HTTP/1.1 made web browsers *slower*! [Nielsen/W3C]
 Makes applications more complicated

Pipelined HTTP/1.1 *still* not widely used after 7 years!

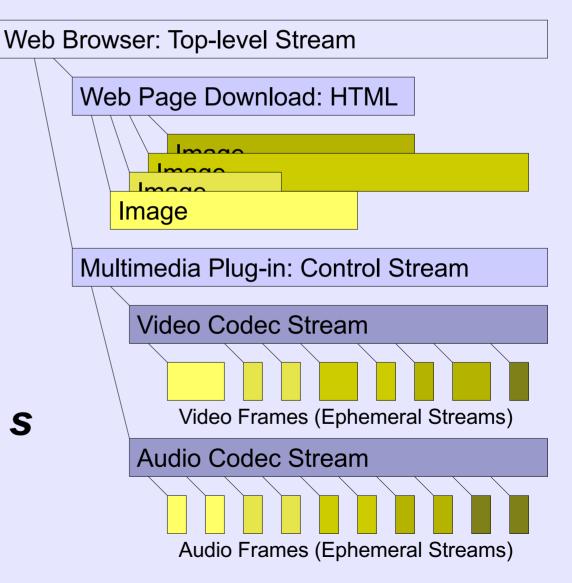
What about Datagrams?

"Do Everything Yourself":

- Tag & associate related ADUs
- Fragment large ADUs (> ~8KB)
- Retransmit lost datagrams (except w/ RDP)
- Perform flow control
- Perform congestion control (except w/ DCCP)

⇒ complexity, fragility, duplication of effort...

Structured Stream Transport


"Don't give up on streams; fix 'em!"

Goals:

- Make streams cheap
 - Let application use one stream per ADU, *efficiently*
- Make streams independent
 - Preserve natural parallelism between ADUs
- Make streams easy to manage
 - Don't have to bind, pass IP address & port number, separately authenticate each new stream

What is a Structured Stream?

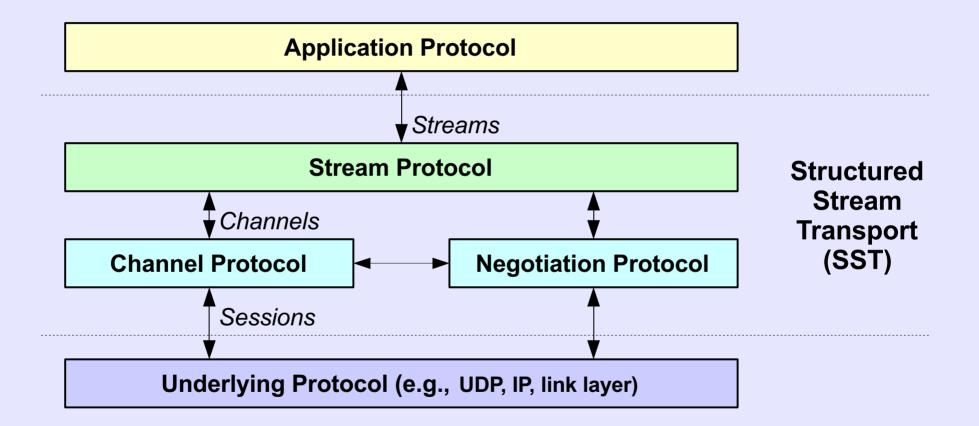
- Unix "fork" model for stream creation
- Given parent stream *s* between **A** and **B**
- B listens on s
- A creates child s' on s
- B accepts s' on s

Talk Outline

- Introduction to Structured Streams
- SST Protocol Design
- Prototype Implementation
- Evaluation, Related Work
- Conclusion

SST Protocol Design

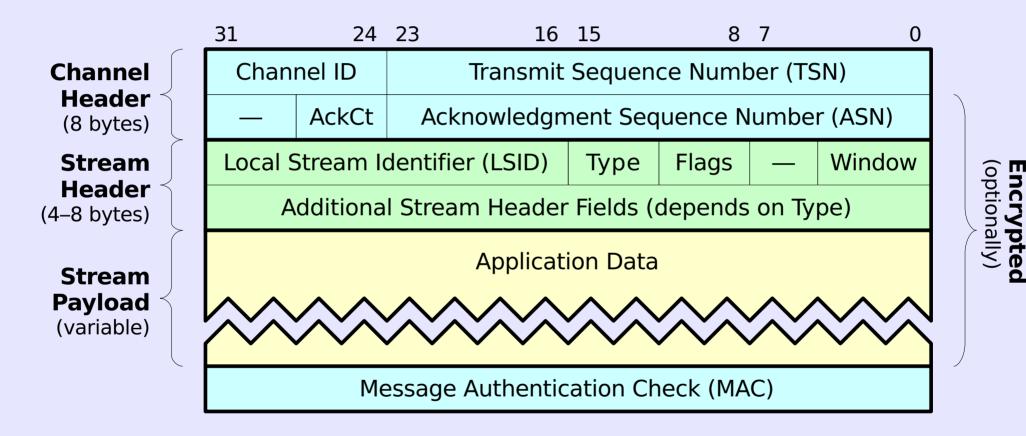
SST Transport Services


Independent per stream:

- Data ordering
- Reliable delivery (optional)
- Flow control (receive window)

Shared among all streams:

- Congestion control
- Replay/hijacking protection
- Transport security (optional)

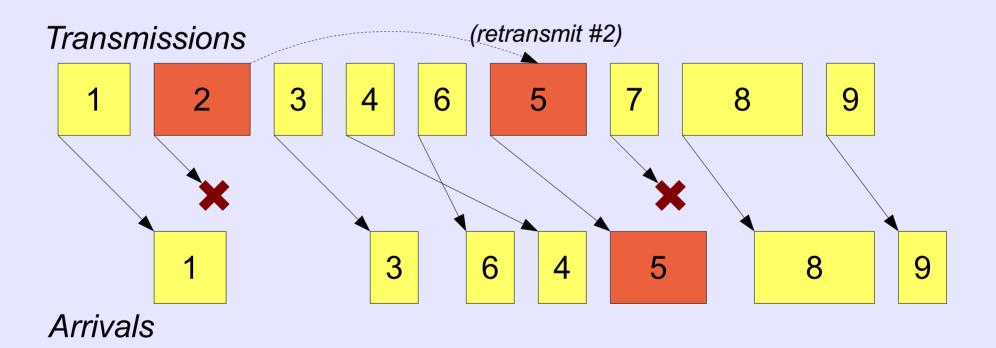

SST Organization

Streams, Channels, Packets

Time **Top-level Application Stream** Substream 3 Substream 2 **Streams** Substream 1 3.2 3.1 1.2 1.1 channel 1 nears end of life; multiplex streams onto channel 1 migrate streams to channel 2 **Channel 1 Channels** multiplex streams onto channel 2 **Channel 2 Packets**

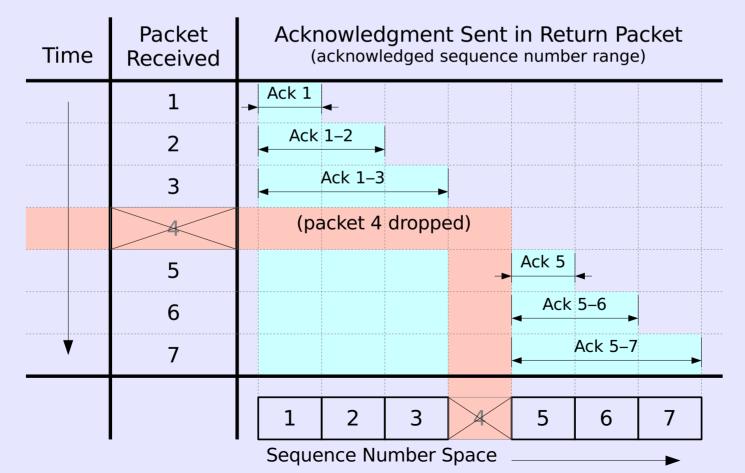
SST Packet Header

(Typical header overhead: 16 bytes + MAC)


Channel Protocol Design

- Sequencing
- Acknowledgment
- Congestion Control
- Security (see paper)

Channel Protocol: Sequencing


Every transmission gets new packet sequence #

- Including acks, retransmissions [DCCP]

- All acknowledgments are *selective* [DCCP]
 - No cumulative ack point as in TCP, SCTP

- All acknowledgments are selective [DCCP]
- Each packet acknowledges a sequence range

- All acknowledgments are selective [DCCP]
- Each packet acknowledges a sequence range
 - Successive ACKs usually overlap
 - \Rightarrow redundancy against lost ACKs
 - No variable-length SACK headers needed
 - \Rightarrow all info in fixed header

- All acknowledgments are selective [DCCP]
- Each packet acknowledges a sequence range
- Congestion control at *channel granularity*
 - Many streams share congestion state

Stream Protocol Design

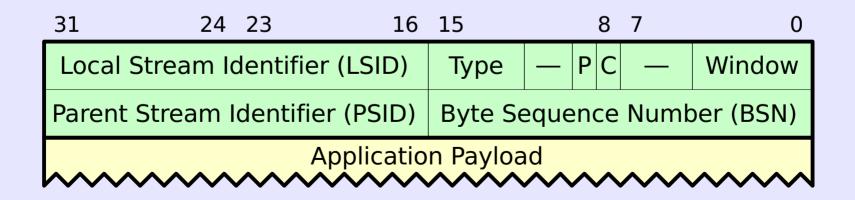
- Stream Creation
- Data Transfer
- Best-effort Datagrams
- Stream Shutdown/Reset (see paper)
- Stream Migration (see paper)

Stream Protocol: Creating Streams

Goal:

Create & start sending data on new stream without round-trip handshake delay

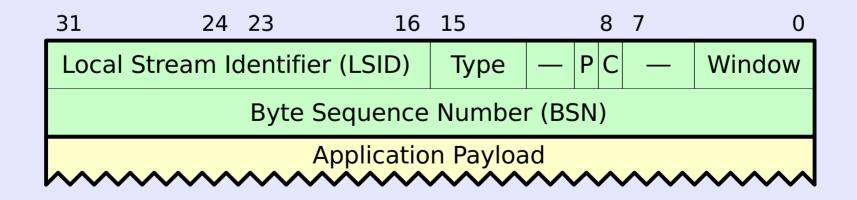
Challenges:


1.What happens to subsequent data segments if initial "create-stream" packet is lost?

2.Flow control: may send how much data *before* seeing receiver's initial window update?

Stream Protocol: Creating Streams

Solution:


- All segments during 1st round-trip carry "create" info (special segment type, parent & child stream IDs)
- Child borrows from parent stream's receive window ("create" packets belong to parent stream for flow control)

Stream Protocol: Data Transfer

Regular data transfer (after 1st round-trip):

- 32-bit wraparound byte sequence numbers (BSNs) (just like TCP)
- Unlimited stream lifetime
 - (just like TCP)

Stream Protocol: Best-effort Datagrams

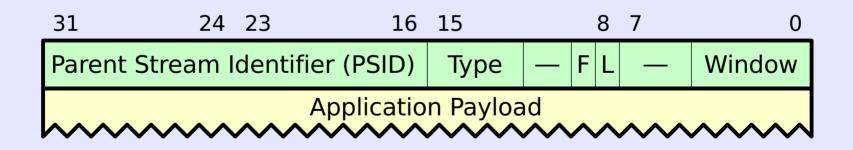
"Datagrams" are *ephemeral streams*

Semantically equivalent to:

1.Create child stream

2.Send data on child stream

3. Close child stream


...but *without* buffering data for retransmission (like setting a short SO_LINGER timeout)

Stream Protocol: Best-effort Datagrams

When datagram is *small*:

- Stateless best-effort delivery optimization

(avoids need to assign stream identifier to child)

Flags: F First Fragment L Last Fragment

Stream Protocol: Best-effort Datagrams

When datagram is *small*:

- Stateless best-effort delivery optimization

When datagram is *large*:

- Fall back to delivery using regular child stream

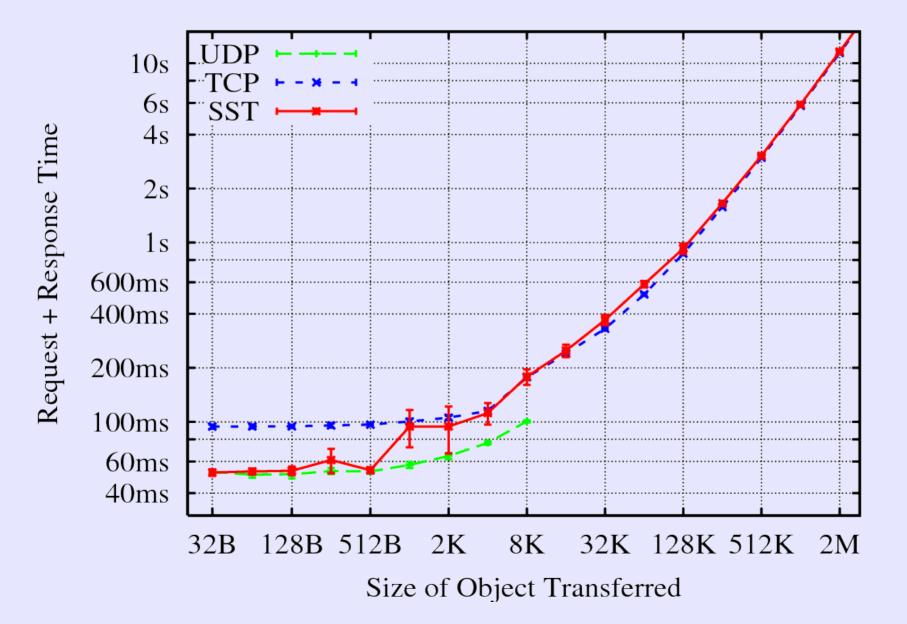
Makes no difference to application; datagrams of any size "just work"!

Implementation & Evaluation

Current Prototype

User-space library in C++

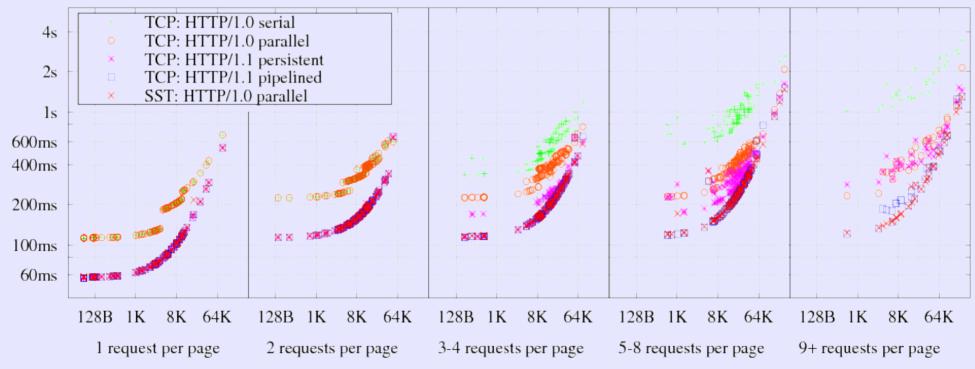
- Application-linkable \Rightarrow simple deployment
- Runs atop UDP ⇒ NAT/firewall compatibility
- ~13,000 lines; ~4,400 semicolons
 (including crypto security & key agreement)


Available at:

http://pdos.csail.mit.edu/uia/sst/

Performance

- Transfer performance vs native kernel TCP
- Minimal slowdown at DSL, WiFi LAN speeds
 TCP-friendliness
 - Congestion control fair to TCP within $\pm 2\%$
- Transaction microbenchmark: SST vs TCP, UDP Web browsing workloads
 - Performance: HTTP on SST vs TCP
 - Responsiveness: request prioritization


Transaction Microbenchmark

Web Browsing Workloads

Performance of transactional HTTP/1.0 on SST:

- Much faster than HTTP/1.0 on TCP
- Faster than persistent HTTP/1.1 on TCP [most browsers]
- As fast as pipelined HTTP/1.1 on TCP [Opera browser]

Web Browsing Workloads

HTTP/1.0 over SST can be more responsive

- No unnecessary request serialization
- Simple out-of-band communication via substreams

Easy to *dynamically prioritize* requests

(Demo)

Related Work

- Application-Layer Framing [Clark/Tennenhouse]
- Transports: TCP, RDP, VMTP, SCTP, DCCP
- Multiplexers: SSL, SSH, MUX, BXXP/BEEP
- T/TCP: TCP for Transactions [Braden]
- TCP congestion state sharing [Touch], Congestion Manager [Balakrishnan]
- Transport-layer migration support [Snoeren]
- Network-layer **prioritization** for QoS [...*many*...]

Summary

<u>A New Transport Mindset</u> TCP: *"think serial"* SST: *"think parallel"*

Future Work

Lots of stuff to do

- Fill holes in spec, code
- Efficient implementation(s)

Protocol improvements/extensions

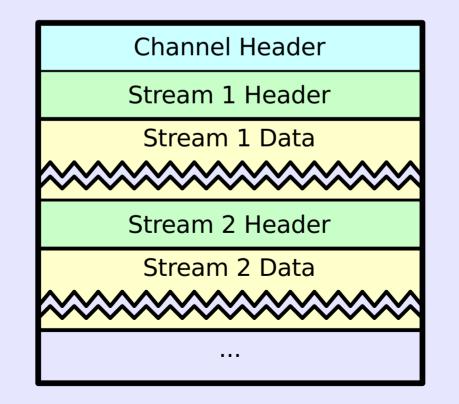
- Fat headers for high-BDP paths
- Chunk bundling
- "Widening the endpoints": multihoming, etc.

High Bandwidth-Delay Product Paths

- w/ Regular Headers
 - ~2²² packets...
 - ~2¹⁵ new streams...
 - ~2³⁰ stream bytes...
 - ...per round-trip

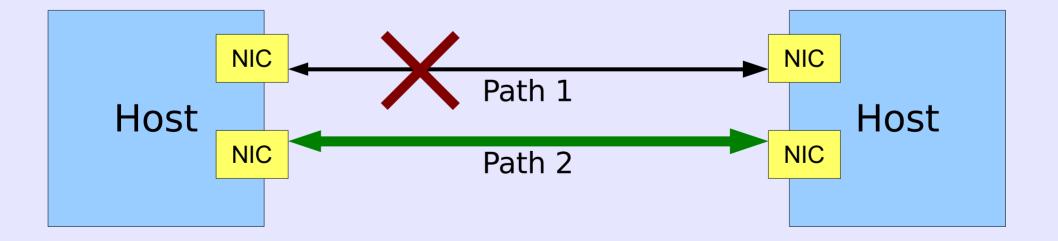
Channel ID		Transmit Sequence Number (TSN)				
_	AckCt	Acknowledgment Sequence Number (ASN)				
Local Stream Identifier (LSID)			Туре	Flags	—	Window
Additional Stream Header Fields (depends on Type)						

w/ Fat Headers

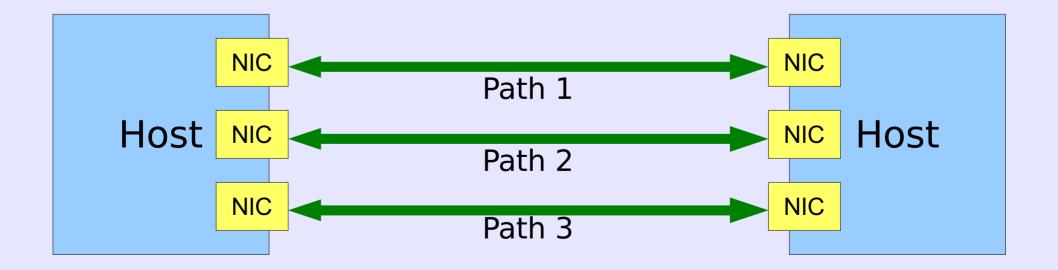

- ~2⁴⁶ channel packets...
- ~ 2^{23} new streams...
- ~2⁴⁶ stream bytes...
- ...per round-trip

Channel ID			TSN high bits			
Transmit Sequence Number (TSN) low bits						
—		AckCt	ASN high bits			
Acknowledgment Sequence Number (ASN) low bits						
Туре	Flags	Local Stream Identifier (LSID)				
Window		Parent Stream Identifier (LSID)				
Chunk Size			BSN high bits			
Byte Sequence Number (BSN) low bits						

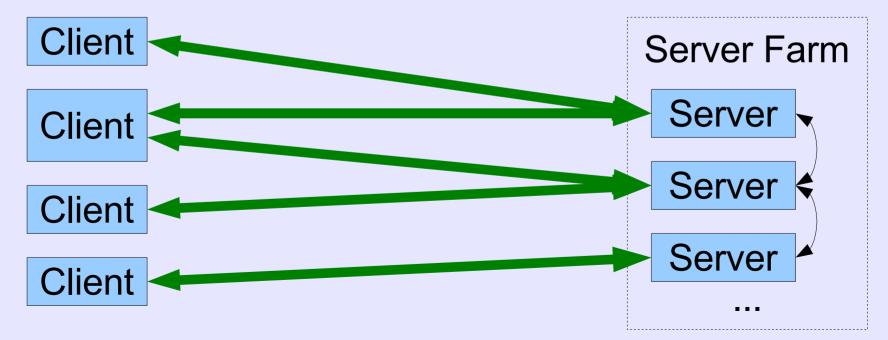
Chunk Bundling


Bundle segments from multiple streams into one channel packet

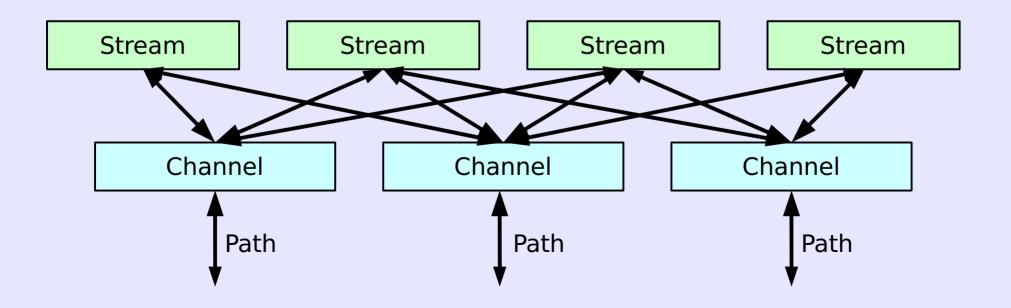
- e.g., VoIP trunking, multiplayer gaming, etc.


Multihoming: multiple interfaces, multiple paths

- Redundancy: fail-over across paths [SCTP]


Multihoming: multiple paths per logical host

- Redundancy: fail-over across paths [SCTP]
- Parallelism: sharing load across paths


Multihoming: multiple paths per logical host

- Redundancy: fail-over across paths [SCTP]
- Parallelism: sharing load across paths
- Scaling: clustered/distributed implementations?

Facilitated by SST's design:

- Channel represents physical path
- Stream represents logical transaction/activity
- Many-to-many relationship

Facilitated by SST's design:

- Channel represents physical path
- Stream represents logical transaction/activity
- Many-to-many relationship

Applications use many streams, not just one >> fewer inherent concurrency bottlenecks

Congestion control is per-channel/path, >> no confusion from varying path delays

Conclusion

SST enables applications to use streams as:

- Sessions (as in legacy TCP apps), or
- ADUs/Transactions (as in HTTP/1.0), or
- Datagrams (as in VoIP, RPC over UDP)

...without:

- TCP's per-stream costs, unnecessary serialization
- UDP's datagram size limits

http://pdos.csail.mit.edu/uia/sst/

"Can't HTTP/1.1 over TCP do this?"

Answer: "Sort of, if you work really hard."

1.Enable HTTP/1.1 pipelining

- Most browsers still don't because servers get it wrong!
- 2. Fragment large downloads via Range requests
 - Pummel server with many small HTTP requests
 - Risk atomicity issues with dynamic content
- 3. Track round-trip time, bandwidth in application
 - Try to keep pipeline full without adding extra delay
- But:

Still get head-of-line blocking on TCP segment loss!

Comparing SST to SCTP

SCTP:

- No dynamic stream creation/destruction
- No per-stream flow control (just per session)
- Best-effort datagrams limited in size

SST:

• No multihoming/failover (yet)

...but channel/stream split should facilitate

Comparing SST to DCCP

DCCP:

- No reliability, ordering, flow control
- No association between packets
- No cryptographic security

SST:

• No congestion control negotiation (yet)

Channel Protocol: Security

Design based on IPsec

- Cryptographic security mode:
 - Encrypt-then-MAC + replay protection [IPsec]
- TCP-grade security mode:
 - No encryption
 - MAC = 32-bit checksum + 32-bit "key"

depends on system time [Tomlinson], secret data [Bellovin] stronger protection than TCP: "validity window" size = 1